These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 28607080)

  • 21.
    Impano S; Yang H; Shepard EM; Swimley R; Pagnier A; Broderick WE; Hoffman BM; Broderick JB
    Angew Chem Int Ed Engl; 2021 Feb; 60(9):4666-4672. PubMed ID: 33935588
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cofactor dependence of reduction potentials for [4Fe-4S]2+/1+ in lysine 2,3-aminomutase.
    Hinckley GT; Frey PA
    Biochemistry; 2006 Mar; 45(10):3219-25. PubMed ID: 16519516
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Viperin, through its radical-SAM activity, depletes cellular nucleotide pools and interferes with mitochondrial metabolism to inhibit viral replication.
    Ebrahimi KH; Howie D; Rowbotham JS; McCullagh J; Armstrong FA; James WS
    FEBS Lett; 2020 May; 594(10):1624-1630. PubMed ID: 32061099
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Why Nature Uses Radical SAM Enzymes so Widely: Electron Nuclear Double Resonance Studies of Lysine 2,3-Aminomutase Show the 5'-dAdo• "Free Radical" Is Never Free.
    Horitani M; Byer AS; Shisler KA; Chandra T; Broderick JB; Hoffman BM
    J Am Chem Soc; 2015 Jun; 137(22):7111-21. PubMed ID: 25923449
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Binding energy in the one-electron reductive cleavage of S-adenosylmethionine in lysine 2,3-aminomutase, a radical SAM enzyme.
    Wang SC; Frey PA
    Biochemistry; 2007 Nov; 46(45):12889-95. PubMed ID: 17944492
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Viperin: An ancient radical SAM enzyme finds its place in modern cellular metabolism and innate immunity.
    Ghosh S; Marsh ENG
    J Biol Chem; 2020 Aug; 295(33):11513-11528. PubMed ID: 32546482
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Viperin interacts with the kinase IRAK1 and the E3 ubiquitin ligase TRAF6, coupling innate immune signaling to antiviral ribonucleotide synthesis.
    Dumbrepatil AB; Ghosh S; Zegalia KA; Malec PA; Hoff JD; Kennedy RT; Marsh ENG
    J Biol Chem; 2019 Apr; 294(17):6888-6898. PubMed ID: 30872404
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A unifying view of the broad-spectrum antiviral activity of RSAD2 (viperin) based on its radical-SAM chemistry.
    Honarmand Ebrahimi K
    Metallomics; 2018 Apr; 10(4):539-552. PubMed ID: 29568838
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Radical SAM enzymes: Nature's choice for radical reactions.
    Broderick JB; Broderick WE; Hoffman BM
    FEBS Lett; 2023 Jan; 597(1):92-101. PubMed ID: 36251330
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Crystal structure of a S-adenosyl-L-methionine-dependent O-methyltransferase-like enzyme from Aspergillus flavus.
    Liao L; Zhou Y; Peng T; Guo Y; Zhao Y; Zeng Z
    Proteins; 2021 Feb; 89(2):185-192. PubMed ID: 32875607
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The presence of the iron-sulfur motif is important for the conformational stability of the antiviral protein, Viperin.
    Haldar S; Paul S; Joshi N; Dasgupta A; Chattopadhyay K
    PLoS One; 2012; 7(2):e31797. PubMed ID: 22363738
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Non-canonical active site architecture of the radical SAM thiamin pyrimidine synthase.
    Fenwick MK; Mehta AP; Zhang Y; Abdelwahed SH; Begley TP; Ealick SE
    Nat Commun; 2015 Mar; 6():6480. PubMed ID: 25813242
    [TBL] [Abstract][Full Text] [Related]  

  • 33. SPASM and twitch domains in S-adenosylmethionine (SAM) radical enzymes.
    Grell TA; Goldman PJ; Drennan CL
    J Biol Chem; 2015 Feb; 290(7):3964-71. PubMed ID: 25477505
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanism of Rate Acceleration of Radical C-C Bond Formation Reaction by a Radical SAM GTP 3',8-Cyclase.
    Pang H; Lilla EA; Zhang P; Zhang D; Shields TP; Scott LG; Yang W; Yokoyama K
    J Am Chem Soc; 2020 May; 142(20):9314-9326. PubMed ID: 32348669
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Expanding Radical SAM Chemistry by Using Radical Addition Reactions and SAM Analogues.
    Ji X; Li Y; Xie L; Lu H; Ding W; Zhang Q
    Angew Chem Int Ed Engl; 2016 Sep; 55(39):11845-8. PubMed ID: 27573794
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Viperin triggers ribosome collision-dependent translation inhibition to restrict viral replication.
    Hsu JC; Laurent-Rolle M; Pawlak JB; Xia H; Kunte A; Hee JS; Lim J; Harris LD; Wood JM; Evans GB; Shi PY; Grove TL; Almo SC; Cresswell P
    Mol Cell; 2022 May; 82(9):1631-1642.e6. PubMed ID: 35316659
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mechanism of Radical Initiation in the Radical SAM Enzyme Superfamily.
    Hoffman BM; Broderick WE; Broderick JB
    Annu Rev Biochem; 2023 Jun; 92():333-349. PubMed ID: 37018846
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Active-Site Controlled, Jahn-Teller Enabled Regioselectivity in Reductive S-C Bond Cleavage of
    Impano S; Yang H; Jodts RJ; Pagnier A; Swimley R; McDaniel EC; Shepard EM; Broderick WE; Broderick JB; Hoffman BM
    J Am Chem Soc; 2021 Jan; 143(1):335-348. PubMed ID: 33372786
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Making and breaking carbon-carbon bonds in class C radical SAM methyltransferases.
    Brimberry MA; Mathew L; Lanzilotta W
    J Inorg Biochem; 2022 Jan; 226():111636. PubMed ID: 34717253
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Substrate-Dependent Cleavage Site Selection by Unconventional Radical S-Adenosylmethionine Enzymes in Diphthamide Biosynthesis.
    Dong M; Horitani M; Dzikovski B; Freed JH; Ealick SE; Hoffman BM; Lin H
    J Am Chem Soc; 2017 Apr; 139(16):5680-5683. PubMed ID: 28383907
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.