These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 28607182)

  • 1. Hydrogen behaviour at twist {110} grain boundaries in
    McEniry EJ; Hickel T; Neugebauer J
    Philos Trans A Math Phys Eng Sci; 2017 Jul; 375(2098):. PubMed ID: 28607182
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrogen Embrittlement at Cleavage Planes and Grain Boundaries in Bcc Iron-Revisiting the First-Principles Cohesive Zone Model.
    Guzmán AA; Jeon J; Hartmaier A; Janisch R
    Materials (Basel); 2020 Dec; 13(24):. PubMed ID: 33352916
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Partitioning of Interstitial Segregants during Decohesion: A DFT Case Study of the Σ3 Symmetric Tilt Grain Boundary in Ferritic Steel.
    Huang X; Janisch R
    Materials (Basel); 2019 Sep; 12(18):. PubMed ID: 31540225
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical behavior of (Ni, Fe)Cr
    Van Brutzel L; Chartier A; Sicaud B; Sauzay M
    J Chem Phys; 2019 Jul; 151(1):014701. PubMed ID: 31272180
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of alloying additions on the hydrogen-induced grain boundary embrittlement in iron.
    Tian ZX; Yan JX; Hao W; Xiao W
    J Phys Condens Matter; 2011 Jan; 23(1):015501. PubMed ID: 21406825
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemomechanical Origin of Hydrogen Trapping at Grain Boundaries in fcc Metals.
    Zhou X; Marchand D; McDowell DL; Zhu T; Song J
    Phys Rev Lett; 2016 Feb; 116(7):075502. PubMed ID: 26943544
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Atomic motifs govern the decoration of grain boundaries by interstitial solutes.
    Zhou X; Ahmadian A; Gault B; Ophus C; Liebscher CH; Dehm G; Raabe D
    Nat Commun; 2023 Jun; 14(1):3535. PubMed ID: 37316498
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microscopic and Macroscopic Characterization of Grain Boundary Energy and Strength in Silicon Carbide via Machine-Learning Techniques.
    Guziewski M; Montes de Oca Zapiain D; Dingreville R; Coleman SP
    ACS Appl Mater Interfaces; 2021 Jan; 13(2):3311-3324. PubMed ID: 33412001
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure of [110] tilt grain boundaries in zirconia bicrystals.
    Shibata N; Yamamoto T; Ikuhara Y; Sakuma T
    J Electron Microsc (Tokyo); 2001; 50(6):429-33. PubMed ID: 11918406
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of electro-permeation of hydrogen in metallic alloys.
    Raina A; Deshpande VS; Fleck NA
    Philos Trans A Math Phys Eng Sci; 2017 Jul; 375(2098):. PubMed ID: 28607188
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antagonist effects of grain boundaries between the trapping process and the fast diffusion path in nickel bicrystals.
    Li J; Hallil A; Metsue A; Oudriss A; Bouhattate J; Feaugas X
    Sci Rep; 2021 Jul; 11(1):15533. PubMed ID: 34330936
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energy barriers at grain boundaries dominate charge carrier transport in an electron-conductive organic semiconductor.
    Vladimirov I; Kühn M; Geßner T; May F; Weitz RT
    Sci Rep; 2018 Oct; 8(1):14868. PubMed ID: 30291288
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A ReaxFF Molecular Dynamics Study of Hydrogen Diffusion in Ruthenium-The Role of Grain Boundaries.
    Onwudinanti C; Pols M; Brocks G; Koelman V; van Duin ACT; Morgan T; Tao S
    J Phys Chem C Nanomater Interfaces; 2022 Apr; 126(13):5950-5959. PubMed ID: 35422891
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A kinetic Monte Carlo approach to diffusion-controlled thermal desorption spectroscopy.
    Schablitzki T; Rogal J; Drautz R
    Philos Trans A Math Phys Eng Sci; 2017 Jul; 375(2098):. PubMed ID: 28607184
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study on the Hydrogen Embrittlement of Nanograined Materials with Different Grain Sizes by Atomistic Simulation.
    Li J; Wu Z; Wang F; Zhang L; Zhou C; Lu C; Teng L; Lin Q
    Materials (Basel); 2022 Jun; 15(13):. PubMed ID: 35806713
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A machine learning-based framework for mapping hydrogen at the atomic scale.
    Zhao Q; Zhu Q; Zhang Z; Yin B; Gao H; Zhou H
    Proc Natl Acad Sci U S A; 2024 Sep; 121(39):e2410968121. PubMed ID: 39284065
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Atomic-scale quantification of grain boundary segregation in nanocrystalline material.
    Herbig M; Raabe D; Li YJ; Choi P; Zaefferer S; Goto S
    Phys Rev Lett; 2014 Mar; 112(12):126103. PubMed ID: 24724663
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ReaxFF reactive force field for the Y-doped BaZrO3 proton conductor with applications to diffusion rates for multigranular systems.
    van Duin AC; Merinov BV; Han SS; Dorso CO; Goddard WA
    J Phys Chem A; 2008 Nov; 112(45):11414-22. PubMed ID: 18925731
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Critical assessment of hydrogen effects on the slip transmission across grain boundaries in
    Adlakha I; Solanki KN
    Proc Math Phys Eng Sci; 2016 Jan; 472(2185):20150617. PubMed ID: 26997895
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrogen Impact: A Review on Diffusibility, Embrittlement Mechanisms, and Characterization.
    Li Q; Ghadiani H; Jalilvand V; Alam T; Farhat Z; Islam MA
    Materials (Basel); 2024 Feb; 17(4):. PubMed ID: 38399215
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.