These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 28607475)

  • 1. Experimental demonstration of quantum digital signatures over 43 dB channel loss using differential phase shift quantum key distribution.
    Collins RJ; Amiri R; Fujiwara M; Honjo T; Shimizu K; Tamaki K; Takeoka M; Sasaki M; Andersson E; Buller GS
    Sci Rep; 2017 Jun; 7(1):3235. PubMed ID: 28607475
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental transmission of quantum digital signatures over 90  km of installed optical fiber using a differential phase shift quantum key distribution system.
    Collins RJ; Amiri R; Fujiwara M; Honjo T; Shimizu K; Tamaki K; Takeoka M; Andersson E; Buller GS; Sasaki M
    Opt Lett; 2016 Nov; 41(21):4883-4886. PubMed ID: 27805641
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Practical quantum digital signature with a gigahertz BB84 quantum key distribution system.
    An XB; Zhang H; Zhang CM; Chen W; Wang S; Yin ZQ; Wang Q; He DY; Hao PL; Liu SF; Zhou XY; Guo GC; Han ZF
    Opt Lett; 2019 Jan; 44(1):139-142. PubMed ID: 30645569
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Free-Space Quantum Signatures Using Heterodyne Measurements.
    Croal C; Peuntinger C; Heim B; Khan I; Marquardt C; Leuchs G; Wallden P; Andersson E; Korolkova N
    Phys Rev Lett; 2016 Sep; 117(10):100503. PubMed ID: 27636461
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental demonstration of quantum digital signatures using phase-encoded coherent states of light.
    Clarke PJ; Collins RJ; Dunjko V; Andersson E; Jeffers J; Buller GS
    Nat Commun; 2012; 3():1174. PubMed ID: 23132024
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Realization of quantum digital signatures without the requirement of quantum memory.
    Collins RJ; Donaldson RJ; Dunjko V; Wallden P; Clarke PJ; Andersson E; Jeffers J; Buller GS
    Phys Rev Lett; 2014 Jul; 113(4):040502. PubMed ID: 25105603
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantum digital signatures without quantum memory.
    Dunjko V; Wallden P; Andersson E
    Phys Rev Lett; 2014 Jan; 112(4):040502. PubMed ID: 24580426
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient quantum digital signatures without symmetrization step.
    Lu YS; Cao XY; Weng CX; Gu J; Xie YM; Zhou MG; Yin HL; Chen ZB
    Opt Express; 2021 Mar; 29(7):10162-10171. PubMed ID: 33820149
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 280-km experimental demonstration of a quantum digital signature with one decoy state.
    Ding HJ; Chen JJ; Ji L; Zhou XY; Zhang CH; Zhang CM; Wang Q
    Opt Lett; 2020 Apr; 45(7):1711-1714. PubMed ID: 32235980
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Security of quantum digital signatures for classical messages.
    Wang TY; Cai XQ; Ren YL; Zhang RL
    Sci Rep; 2015 Mar; 5():9231. PubMed ID: 25782417
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantum key distribution over a 72 dB channel loss using ultralow dark count superconducting single-photon detectors.
    Shibata H; Honjo T; Shimizu K
    Opt Lett; 2014 Sep; 39(17):5078-81. PubMed ID: 25166078
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Secure polarization-independent subcarrier quantum key distribution in optical fiber channel using BB84 protocol with a strong reference.
    Gleim AV; Egorov VI; Nazarov YV; Smirnov SV; Chistyakov VV; Bannik OI; Anisimov AA; Kynev SM; Ivanova AE; Collins RJ; Kozlov SA; Buller GS
    Opt Express; 2016 Feb; 24(3):2619-33. PubMed ID: 26906834
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Twin-Field Quantum Digital Signature with Fully Discrete Phase Randomization.
    Wu J; He C; Xie J; Liu X; Zhang M
    Entropy (Basel); 2022 Jun; 24(6):. PubMed ID: 35741559
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental quantum key distribution with uncharacterized sources and projective measurements.
    Zhu JR; Wu WZ; Ji L; Zhang CM; Wang Q
    Opt Lett; 2019 Dec; 44(23):5703-5706. PubMed ID: 31774758
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Entanglement-based quantum digital signatures over a deployed campus network.
    Chapman JC; Alshowkan M; Qi B; Peters NA
    Opt Express; 2024 Feb; 32(5):7521-7539. PubMed ID: 38439431
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental quantum secure network with digital signatures and encryption.
    Yin HL; Fu Y; Li CL; Weng CX; Li BH; Gu J; Lu YS; Huang S; Chen ZB
    Natl Sci Rev; 2023 Apr; 10(4):nwac228. PubMed ID: 37168101
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental demonstration on the deterministic quantum key distribution based on entangled photons.
    Chen H; Zhou ZY; Zangana AJ; Yin ZQ; Wu J; Han YG; Wang S; Li HW; He DY; Tawfeeq SK; Shi BS; Guo GC; Chen W; Han ZF
    Sci Rep; 2016 Feb; 6():20962. PubMed ID: 26860582
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Overcoming the rate-distance limit of quantum key distribution without quantum repeaters.
    Lucamarini M; Yuan ZL; Dynes JF; Shields AJ
    Nature; 2018 May; 557(7705):400-403. PubMed ID: 29720656
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 100 km differential phase shift quantum key distribution experiment with low jitter up-conversion detectors.
    Diamanti E; Takesue H; Langrock C; Fejer MM; Yamamoto Y
    Opt Express; 2006 Dec; 14(26):13073-82. PubMed ID: 19532203
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental measurement-device-independent quantum digital signatures.
    Roberts GL; Lucamarini M; Yuan ZL; Dynes JF; Comandar LC; Sharpe AW; Shields AJ; Curty M; Puthoor IV; Andersson E
    Nat Commun; 2017 Oct; 8(1):1098. PubMed ID: 29061966
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.