BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 2860748)

  • 1. [Metabolism of cGMP with K+ concentration increase in the medium causing depolarization of cortical cell membranes in normal and irradiated rats].
    Skopenko EV; Bratus' NI; Parkhomets TI; Vasil'ev AN; Kucherenko NE
    Ukr Biokhim Zh (1978); 1985; 57(2):76-9. PubMed ID: 2860748
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The cGMP system in irradiated animals. Changes in cGMP content and activities of guanylate cyclase and cyclic nucleotide phosphodiesterase.
    Sobolev AS; Tertov VV; Rybalkin SD
    Acta Radiol Oncol; 1984; 23(5):367-73. PubMed ID: 6150603
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence for altered cyclic nucleotide metabolism during compensatory renal hypertrophy and neonatal kidney growth.
    Schlondorff D; Weber H
    Yale J Biol Med; 1978; 51(3):387-92. PubMed ID: 32665
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ovarian cyclic GMP concentration and guanylate cyclase and cyclic GMP phosphodiesterase activities in proestrus rat after treatment with LH.
    Patwardhan VV; Lanthier A
    Horm Metab Res; 1987 Mar; 19(3):136-7. PubMed ID: 2883102
    [No Abstract]   [Full Text] [Related]  

  • 5. Cyclic GMP phosphodiesterase and guanylate cyclase activities in rabbit ovaries and the effect of in-vivo stimulation with LH.
    Patwardhan VV; Lanthier A
    J Endocrinol; 1984 Jun; 101(3):305-10. PubMed ID: 6144719
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distribution of enzymes of cGMP metabolism in glomeruli and tubules isolated from normal and nephrotic rat kidney cortex.
    Helwig JJ; Yusufi AN; Rebel G; Geiser J; Bollack C; Mandel P
    Int J Biochem; 1980; 12(1-2):209-14. PubMed ID: 6105103
    [No Abstract]   [Full Text] [Related]  

  • 7. Cyclic cuanosine 3'5' phosphate, guanylate cyclase and cyclic guanosine phosphodiesterase in the eye lens.
    Bizec JC; Klethi J; Mandel P
    Biochem Biophys Res Commun; 1982 May; 106(1):108-12. PubMed ID: 6125150
    [No Abstract]   [Full Text] [Related]  

  • 8. Long-term potentiation in hippocampus involves sequential activation of soluble guanylate cyclase, cGMP-dependent protein kinase and cGMP-degrading phosphodiesterase, alterations in hyperammonemia.
    Monfort P; Felipo V
    BMC Pharmacol; 2005 Jun; 5 Suppl 1(Suppl 1):P66. PubMed ID: 15969770
    [No Abstract]   [Full Text] [Related]  

  • 9. Characterization of nitric oxide synthase, soluble guanylyl cyclase, and Ca2+/calmodulin-stimulated cGMP phosphodiesterase as components of neuronal signal transduction.
    Mayer B; Koesling D; Böhme E
    Adv Second Messenger Phosphoprotein Res; 1993; 28():111-9. PubMed ID: 7691122
    [No Abstract]   [Full Text] [Related]  

  • 10. Cyclic GMP systems in the retina.
    Ferrendelli JA; De Vries GW
    Fed Proc; 1983 Nov; 42(14):3103-6. PubMed ID: 6138283
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increases of guanosine 3',5'-monophosphate-related enzymes in kidneys of developing rats.
    Schlondorff D; Trizna W
    Pediatr Res; 1978 Aug; 12(8):882-5. PubMed ID: 28509
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reciprocal regulation of cyclic GMP content by cyclic GMP-phosphodiesterase and guanylate cyclase in SHR with CsA-induced nephrotoxicity.
    Hosogai N; Seki J; Goto T
    Br J Pharmacol; 2001 Nov; 134(5):995-1002. PubMed ID: 11682447
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cyclic GMP in the retinas of normal mice and those heterozygous for early-onset photoreceptor dystrophy.
    Doshi M; Voaden MJ; Arden GB
    Exp Eye Res; 1985 Jul; 41(1):61-5. PubMed ID: 2863161
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Changes in cyclic nucleotide metabolism in compensatory adrenal hypertrophy (following unilateral adrenalectomy)].
    Iudaev NA; Afinogenova SA; Zhukova TV
    Probl Endokrinol (Mosk); 1982; 28(6):59-66. PubMed ID: 6130520
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enzymes of guanine nucleotide metabolism and the diurnal cycle in cGMP content of the chick pineal gland.
    Wainwright SD; Wainwright LK
    Can J Biochem Cell Biol; 1983; 61(2-3):137-43. PubMed ID: 6133605
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increased guanylate cyclase activity and guanosine 3',5'-monophosphate content in ethionine-induced hepatomas.
    DeRubertis FR; Craven P
    Cancer Res; 1977 Jan; 37(1):15-21. PubMed ID: 11887
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nitric oxide-independent down-regulation of soluble guanylyl cyclase by bacterial endotoxin in astroglial cells.
    Baltrons MA; García A
    J Neurochem; 1999 Nov; 73(5):2149-57. PubMed ID: 10537075
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Desensitization of NO/cGMP signaling in smooth muscle: blood vessels versus airways.
    Mullershausen F; Lange A; Mergia E; Friebe A; Koesling D
    Mol Pharmacol; 2006 Jun; 69(6):1969-74. PubMed ID: 16510560
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cyclic GMP metabolism in relation to the regulation of cell growth in BALB/c3T3 cells.
    Yasuda H; Hanai N; Kurata M; Yamada M
    Exp Cell Res; 1978 Jun; 114(1):111-6. PubMed ID: 26583
    [No Abstract]   [Full Text] [Related]  

  • 20. Development of guanylate cyclase activity in mouse embryonic lung.
    Macchia V; Beguinot L; Garbi C; Alescio T
    Acta Embryol Exp (Palermo); 1978; (2):213-27. PubMed ID: 34309
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.