These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 28607983)
41. Investigating Bénard-Marangoni migration at the air-water interface in the time domain using sum frequency generation (SFG) spectroscopy of palmitic acid monolayers. Fellows AP; Casford MTL; Davies PB J Chem Phys; 2022 Apr; 156(16):164701. PubMed ID: 35490017 [TBL] [Abstract][Full Text] [Related]
42. Molecular orientation of organic thin films on dielectric solid substrates: a phase-sensitive vibrational SFG study. Ge A; Peng Q; Qiao L; Yepuri NR; Darwish TA; Matsusaki M; Akashi M; Ye S Phys Chem Chem Phys; 2015 Jul; 17(27):18072-8. PubMed ID: 26099990 [TBL] [Abstract][Full Text] [Related]
43. A theoretical description of the polarization dependence of the sum frequency generation spectroscopy of the water/vapor interface. Perry A; Neipert C; Kasprzyk CR; Green T; Space B; Moore PB J Chem Phys; 2005 Oct; 123(14):144705. PubMed ID: 16238414 [TBL] [Abstract][Full Text] [Related]
44. Femtosecond Vibrational Sum-Frequency Generation Spectroscopy of Chiral Molecules in Isotropic Liquid. Lee T; Rhee H; Cho M J Phys Chem Lett; 2018 Dec; 9(23):6723-6730. PubMed ID: 30403871 [TBL] [Abstract][Full Text] [Related]
45. Surface structure of sulfuric acid solution relevant to sulfate aerosol: molecular dynamics simulation combined with sum frequency generation measurement. Ishiyama T; Morita A; Miyamae T Phys Chem Chem Phys; 2011 Dec; 13(47):20965-73. PubMed ID: 22009046 [TBL] [Abstract][Full Text] [Related]
46. A structural and temporal study of the surfactants behenyltrimethylammonium methosulfate and behenyltrimethylammonium chloride adsorbed at air/water and air/glass interfaces using sum frequency generation spectroscopy. Goussous SA; Casford MTL; Johnson SA; Davies PB J Colloid Interface Sci; 2017 Feb; 488():365-372. PubMed ID: 27846410 [TBL] [Abstract][Full Text] [Related]
47. Analysis of the second harmonic generation signal from a liquid/air and liquid/liquid interface. Pham TT; Jonchère A; Dufrêche JF; Brevet PF; Diat O J Chem Phys; 2017 Apr; 146(14):144701. PubMed ID: 28411591 [TBL] [Abstract][Full Text] [Related]
48. "Half-hydration" at the air/water interface revealed by heterodyne-detected electronic sum frequency generation spectroscopy, polarization second harmonic generation, and molecular dynamics simulation. Watanabe H; Yamaguchi S; Sen S; Morita A; Tahara T J Chem Phys; 2010 Apr; 132(14):144701. PubMed ID: 20406004 [TBL] [Abstract][Full Text] [Related]
49. Time Correlation Function Modeling of Third-Order Sum Frequency Vibrational Spectroscopy of a Charged Surface/Water Interface. Green AJ; Space B J Phys Chem B; 2015 Jul; 119(29):9219-24. PubMed ID: 25415752 [TBL] [Abstract][Full Text] [Related]
50. Comparative study of direct and phase-specific vibrational sum-frequency generation spectroscopy: advantages and limitations. Pool RE; Versluis J; Backus EH; Bonn M J Phys Chem B; 2011 Dec; 115(51):15362-9. PubMed ID: 22074616 [TBL] [Abstract][Full Text] [Related]
51. Elucidation of the pH-Dependent Electric Double Layer Structure at the Silica/Water Interface Using Heterodyne-Detected Vibrational Sum Frequency Generation Spectroscopy. Wei F; Urashima SH; Nihonyanagi S; Tahara T J Am Chem Soc; 2023 Apr; 145(16):8833-8846. PubMed ID: 37068781 [TBL] [Abstract][Full Text] [Related]
52. Structure and dynamics of interfacial water studied by heterodyne-detected vibrational sum-frequency generation. Nihonyanagi S; Mondal JA; Yamaguchi S; Tahara T Annu Rev Phys Chem; 2013; 64():579-603. PubMed ID: 23331304 [TBL] [Abstract][Full Text] [Related]
53. Intrinsic chirality and prochirality at Air/R-(+)- and S-(-)-limonene interfaces: spectral signatures with interference chiral sum-frequency generation vibrational spectroscopy. Fu L; Zhang Y; Wei ZH; Wang HF Chirality; 2014 Sep; 26(9):509-20. PubMed ID: 24895322 [TBL] [Abstract][Full Text] [Related]
54. Direct evidence for orientational flip-flop of water molecules at charged interfaces: a heterodyne-detected vibrational sum frequency generation study. Nihonyanagi S; Yamaguchi S; Tahara T J Chem Phys; 2009 May; 130(20):204704. PubMed ID: 19485472 [TBL] [Abstract][Full Text] [Related]
55. Interfacial Structure of Room-Temperature Ionic Liquids at the Solid-Liquid Interface as Probed by Sum Frequency Generation Spectroscopy. Baldelli S J Phys Chem Lett; 2013 Jan; 4(2):244-52. PubMed ID: 26283429 [TBL] [Abstract][Full Text] [Related]
56. Second-order spectral lineshapes from charged interfaces. Ohno PE; Wang HF; Geiger FM Nat Commun; 2017 Oct; 8(1):1032. PubMed ID: 29044095 [TBL] [Abstract][Full Text] [Related]
57. Demonstrating the feasibility of monitoring the molecular-level structures of moving polymer/silane interfaces during silane diffusion using SFG. Chen C; Wang J; Loch CL; Ahn D; Chen Z J Am Chem Soc; 2004 Feb; 126(4):1174-9. PubMed ID: 14746487 [TBL] [Abstract][Full Text] [Related]
58. Infrared-visible sum frequency generation spectroscopic study of molecular orientation at polystyrene/comb-polymer interfaces. Harp GP; Rangwalla H; Yeganeh MS; Dhinojwala A J Am Chem Soc; 2003 Sep; 125(37):11283-90. PubMed ID: 16220950 [TBL] [Abstract][Full Text] [Related]
59. What interactions can distort the orientational distribution of interfacial water molecules as probed by second harmonic and sum frequency generation? de Beer AG; Roke S J Chem Phys; 2016 Jul; 145(4):044705. PubMed ID: 27475384 [TBL] [Abstract][Full Text] [Related]
60. Air-liquid interfaces of aqueous solutions containing ammonium and sulfate: spectroscopic and molecular dynamics studies. Gopalakrishnan S; Jungwirth P; Tobias DJ; Allen HC J Phys Chem B; 2005 May; 109(18):8861-72. PubMed ID: 16852054 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]