BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 2860809)

  • 1. Renal sodium reabsorption, oxygen consumption, and gamma-glutamyltransferase excretion in the postischemic rat kidney.
    Herminghuysen D; Welbourne CJ; Welbourne TC
    Am J Physiol; 1985 Jun; 248(6 Pt 2):F804-9. PubMed ID: 2860809
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ischemic damage and repair in the rat proximal tubule: differences among the S1, S2, and S3 segments.
    Venkatachalam MA; Bernard DB; Donohoe JF; Levinsky NG
    Kidney Int; 1978 Jul; 14(1):31-49. PubMed ID: 682423
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of immediate blood flow enhancement on the postischemic kidney: functional, morphologic, and biochemical assessments.
    Zager RA; Timmerman TP; Merola AJ
    J Lab Clin Med; 1985 Oct; 106(4):360-8. PubMed ID: 4045294
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxygen free radicals in ischemic acute renal failure in the rat.
    Paller MS; Hoidal JR; Ferris TF
    J Clin Invest; 1984 Oct; 74(4):1156-64. PubMed ID: 6434591
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Renal acid-base metabolism after ischemia.
    Holloway JC; Phifer T; Henderson R; Welbourne TC
    Kidney Int; 1986 May; 29(5):989-94. PubMed ID: 3723929
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential effects of human atrial natriuretic peptide and furosemide on glomerular filtration rate and renal oxygen consumption in humans.
    Swärd K; Valsson F; Sellgren J; Ricksten SE
    Intensive Care Med; 2005 Jan; 31(1):79-85. PubMed ID: 15565364
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regeneration of the renal brush border after renal ischemia in rats.
    Paddock JK; Lada W; Lowenstein LM
    Am J Physiol; 1981 Jul; 241(1):F28-33. PubMed ID: 6113766
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increased renal metabolism in diabetes. Mechanism and functional implications.
    Körner A; Eklöf AC; Celsi G; Aperia A
    Diabetes; 1994 May; 43(5):629-33. PubMed ID: 8168637
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nephron pO2 and renal oxygen usage in the hypertensive rat kidney.
    Welch WJ; Baumgärtl H; Lübbers D; Wilcox CS
    Kidney Int; 2001 Jan; 59(1):230-7. PubMed ID: 11135075
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of Renal Blood Flow and Oxygenation in CKD Using Magnetic Resonance Imaging.
    Khatir DS; Pedersen M; Jespersen B; Buus NH
    Am J Kidney Dis; 2015 Sep; 66(3):402-11. PubMed ID: 25618188
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of an altered glutathione content on renal ischemic injury.
    Scaduto RC; Gattone VH; Grotyohann LW; Wertz J; Martin LF
    Am J Physiol; 1988 Nov; 255(5 Pt 2):F911-21. PubMed ID: 3189564
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of mannitol on the postischemic kidney. Biochemical, functional, and morphologic assessments.
    Zager RA; Mahan J; Merola AJ
    Lab Invest; 1985 Oct; 53(4):433-42. PubMed ID: 3930877
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of reversible and irreversible ischemia on marker enzymes of BBM from renal cortical PT subpopulations.
    Khundmiri SJ; Asghar M; Khan F; Salim S; Yusufi AN
    Am J Physiol; 1997 Dec; 273(6):F849-56. PubMed ID: 9435672
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Renal adaptation to a low phosphate diet in rats.
    Shah SV; Kempson SA; Northrup TE; Dousa TP
    J Clin Invest; 1979 Oct; 64(4):955-66. PubMed ID: 479377
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The contribution of hypoxia to postischemic renal dysfunction.
    Galat JA; Robinson AV; Rhodes RS
    Surgery; 1988 Aug; 104(2):257-65. PubMed ID: 3400059
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Renal interstitial pressure and sodium excretion during hilar lymphatic ligation.
    Wilcox CS; Sterzel RB; Dunckel PT; Mohrmann M; Perfetto M
    Am J Physiol; 1984 Aug; 247(2 Pt 2):F344-51. PubMed ID: 6465326
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of cisplatin on renal function in rabbits: mechanism of reduced glucose reabsorption.
    Kim YK; Byun HS; Kim YH; Woo JS; Lee SH
    Toxicol Appl Pharmacol; 1995 Jan; 130(1):19-26. PubMed ID: 7839366
    [TBL] [Abstract][Full Text] [Related]  

  • 18. gamma-L-glutamyl-L-DOPA inhibits Na(+)-phosphate cotransport across renal brush border membranes and increases renal excretion of phosphate.
    de Toledo FG; Thompson MA; Bolliger C; Tyce GM; Dousa TP
    Kidney Int; 1999 May; 55(5):1832-42. PubMed ID: 10231445
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ostnatal development of renal function: micropuncture and clearance studies in the dog.
    Horster M; Valtin H
    J Clin Invest; 1971 Apr; 50(4):779-95. PubMed ID: 5547275
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gamma-glutamyltransferase release by the post ischemic kidney: multiple forms and cellular pH.
    Welbourne TC; Phifer T; Thomas M; Dass PD
    Life Sci; 1983 Sep; 33(12):1141-7. PubMed ID: 6136882
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.