BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 2860810)

  • 1. Cation dependence of renal outer cortical brush border membrane L-glutamate transport.
    Fukuhara Y; Turner RJ
    Am J Physiol; 1985 Jun; 248(6 Pt 2):F869-75. PubMed ID: 2860810
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stimulation of the efflux of L-glutamate from renal brush-border membrane vesicles by extravesicular potassium.
    Sacktor B; Lepor N; Schneider EG
    Biosci Rep; 1981 Sep; 1(9):709-13. PubMed ID: 6125220
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrogenicity of sodium/L-glutamate cotransport in rabbit renal brush-border membranes: a reevaluation.
    Heinz E; Sommerfeld DL; Kinne RK
    Biochim Biophys Acta; 1988 Jan; 937(2):300-8. PubMed ID: 2892532
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of sodium-dependent and sodium-independent nucleoside transport systems in rabbit brush-border and basolateral plasma-membrane vesicles from the renal outer cortex.
    Williams TC; Doherty AJ; Griffith DA; Jarvis SM
    Biochem J; 1989 Nov; 264(1):223-31. PubMed ID: 2604712
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sodium-dependent sulfate transport in renal outer cortical brush border membrane vesicles.
    Turner RJ
    Am J Physiol; 1984 Nov; 247(5 Pt 2):F793-8. PubMed ID: 6093591
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transport characteristics of L-glutamate in human jejunal brush-border membrane vesicles.
    Harig JM; Rajendran VM; Barry JA; Ramaswamy K
    Biochim Biophys Acta; 1987 Oct; 903(2):358-64. PubMed ID: 2888487
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of cadmium on Na-Pi cotransport kinetics in rabbit renal brush-border membrane vesicles.
    Park K; Kim KR; Kim JY; Park YS
    Toxicol Appl Pharmacol; 1997 Aug; 145(2):255-9. PubMed ID: 9266797
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reconstitution and partial purification of several Na+ cotransport systems from renal brush-border membranes. Properties of the L-glutamate transporter in proteoliposomes.
    Koepsell H; Korn K; Ferguson D; Menuhr H; Ollig D; Haase W
    J Biol Chem; 1984 May; 259(10):6548-58. PubMed ID: 6725262
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The singular effect of an internal K+ gradient (K+i greater than K+o) on the Na+ gradient (Na+o greater than NA+i)-dependent transport of L-glutamate in renal brush border membrane vesicles.
    Sacktor B; Schneider EG
    Int J Biochem; 1980; 12(1-2):229-34. PubMed ID: 7399026
    [No Abstract]   [Full Text] [Related]  

  • 10. Hydrogen ion cotransport by the renal brush border glutamate transporter.
    Nelson PJ; Dean GE; Aronson PS; Rudnick G
    Biochemistry; 1983 Nov; 22(23):5459-63. PubMed ID: 6140027
    [TBL] [Abstract][Full Text] [Related]  

  • 11. L-glutamate transport in renal plasma membrane vesicles.
    Sacktor B
    Mol Cell Biochem; 1981 Sep; 39():239-51. PubMed ID: 6118822
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sodium-dependent succinate transport in renal outer cortical brush border membrane vesicles.
    Fukuhara Y; Turner RJ
    Am J Physiol; 1983 Sep; 245(3):F374-81. PubMed ID: 6225342
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sodium gradient- and sodium plus potassium gradient-dependent L-glutamate uptake in renal basolateral membrane vesicles.
    Sacktor B; Rosenbloom IL; Liang CT; Cheng L
    J Membr Biol; 1981 May; 60(1):63-71. PubMed ID: 7241582
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of potassium and membrane potential on sodium-dependent glutamic acid uptake.
    Burckhardt G; Kinne R; Stange G; Murer H
    Biochim Biophys Acta; 1980 Jun; 599(1):191-201. PubMed ID: 7397147
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms of Na+ uptake into renal brush border membrane vesicles.
    Nord EP; Hafezi A; Wright EM; Fine LG
    Am J Physiol; 1984 Oct; 247(4 Pt 2):F548-54. PubMed ID: 6496682
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characteristics of glutamic acid transport by rabbit intestinal brush-border membrane vesicles. Effects of Na+-, K+- and H+-gradients.
    Berteloot A
    Biochim Biophys Acta; 1984 Aug; 775(2):129-40. PubMed ID: 6147159
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of cadmium chloride in vitro on sodium-glutamate cotransport in brush border membrane vesicles isolated from rabbit kidney.
    Kinne RK; Schütz H; Kinne-Saffran E
    Toxicol Appl Pharmacol; 1995 Dec; 135(2):216-21. PubMed ID: 8545830
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Studies on the mechanism of placental transport of L-glutamate (the effect of K+ in microvillous vesicles on L-glutamate uptake)].
    Iioka H; Moriyama I; Itoh K; Hino K; Ichijo M
    Nihon Sanka Fujinka Gakkai Zasshi; 1985 Oct; 37(10):2005-9. PubMed ID: 4078404
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heterogeneity of sodium-dependent D-glucose transport sites along the proximal tubule: evidence from vesicle studies.
    Turner RJ; Moran A
    Am J Physiol; 1982 Apr; 242(4):F406-14. PubMed ID: 6278960
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carrier-mediated transport of pyroglutamyl-histidine in renal brush border membrane vesicles.
    Skopicki HA; Fisher K; Zikos D; Flouret G; Bloch R; Kubillus S; Peterson DR
    Am J Physiol; 1988 Dec; 255(6 Pt 1):C822-7. PubMed ID: 3202151
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.