BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 28608153)

  • 1. Low levels of physiological interstitial flow eliminate morphogen gradients and guide angiogenesis.
    Shirure VS; Lezia A; Tao A; Alonzo LF; George SC
    Angiogenesis; 2017 Nov; 20(4):493-504. PubMed ID: 28608153
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synergy between interstitial flow and VEGF directs capillary morphogenesis in vitro through a gradient amplification mechanism.
    Helm CL; Fleury ME; Zisch AH; Boschetti F; Swartz MA
    Proc Natl Acad Sci U S A; 2005 Nov; 102(44):15779-84. PubMed ID: 16249343
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physicochemical regulation of endothelial sprouting in a 3D microfluidic angiogenesis model.
    Verbridge SS; Chakrabarti A; DelNero P; Kwee B; Varner JD; Stroock AD; Fischbach C
    J Biomed Mater Res A; 2013 Oct; 101(10):2948-56. PubMed ID: 23559519
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vascular endothelial-cadherin stimulates syndecan-1-coupled insulin-like growth factor-1 receptor and cross-talk between αVβ3 integrin and vascular endothelial growth factor receptor 2 at the onset of endothelial cell dissemination during angiogenesis.
    Rapraeger AC; Ell BJ; Roy M; Li X; Morrison OR; Thomas GM; Beauvais DM
    FEBS J; 2013 May; 280(10):2194-206. PubMed ID: 23331867
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluid forces control endothelial sprouting.
    Song JW; Munn LL
    Proc Natl Acad Sci U S A; 2011 Sep; 108(37):15342-7. PubMed ID: 21876168
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extracellular matrix derived from Wharton's Jelly-derived mesenchymal stem cells promotes angiogenesis via integrin αVβ3/c-Myc/P300/VEGF.
    Ma B; Wang T; Li J; Wang Q
    Stem Cell Res Ther; 2022 Jul; 13(1):327. PubMed ID: 35851415
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional cell culture model for measuring the effects of interstitial fluid flow on tumor cell invasion.
    Tchafa AM; Shah AD; Wang S; Duong MT; Shieh AC
    J Vis Exp; 2012 Jul; (65):. PubMed ID: 22872144
    [TBL] [Abstract][Full Text] [Related]  

  • 8. VEGF gradients, receptor activation, and sprout guidance in resting and exercising skeletal muscle.
    Mac Gabhann F; Ji JW; Popel AS
    J Appl Physiol (1985); 2007 Feb; 102(2):722-34. PubMed ID: 17038488
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Autologous morphogen gradients by subtle interstitial flow and matrix interactions.
    Fleury ME; Boardman KC; Swartz MA
    Biophys J; 2006 Jul; 91(1):113-21. PubMed ID: 16603487
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro 3D collective sprouting angiogenesis under orchestrated ANG-1 and VEGF gradients.
    Shin Y; Jeon JS; Han S; Jung GS; Shin S; Lee SH; Sudo R; Kamm RD; Chung S
    Lab Chip; 2011 Jul; 11(13):2175-81. PubMed ID: 21617793
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modelling of endothelial cell migration and angiogenesis in microfluidic cell culture systems.
    Kuzmic N; Moore T; Devadas D; Young EWK
    Biomech Model Mechanobiol; 2019 Jun; 18(3):717-731. PubMed ID: 30604299
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Perfused 3D angiogenic sprouting in a high-throughput in vitro platform.
    van Duinen V; Zhu D; Ramakers C; van Zonneveld AJ; Vulto P; Hankemeier T
    Angiogenesis; 2019 Feb; 22(1):157-165. PubMed ID: 30171498
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Blocking αvβ3 integrin by a recombinant RGD disintegrin impairs VEGF signaling in endothelial cells.
    Montenegro CF; Salla-Pontes CL; Ribeiro JU; Machado AZ; Ramos RF; Figueiredo CC; Morandi V; Selistre-de-Araujo HS
    Biochimie; 2012 Aug; 94(8):1812-20. PubMed ID: 22561350
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational model of vascular endothelial growth factor spatial distribution in muscle and pro-angiogenic cell therapy.
    Mac Gabhann F; Ji JW; Popel AS
    PLoS Comput Biol; 2006 Sep; 2(9):e127. PubMed ID: 17002494
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The promotion of endothelial cell attachment and spreading using FNIII10 fused to VEGF-A165.
    Traub S; Morgner J; Martino MM; Höning S; Swartz MA; Wickström SA; Hubbell JA; Eming SA
    Biomaterials; 2013 Aug; 34(24):5958-68. PubMed ID: 23683723
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfluidics embedded within extracellular matrix to define vascular architectures and pattern diffusive gradients.
    Baker BM; Trappmann B; Stapleton SC; Toro E; Chen CS
    Lab Chip; 2013 Aug; 13(16):3246-52. PubMed ID: 23787488
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interstitial flow influences direction of tumor cell migration through competing mechanisms.
    Polacheck WJ; Charest JL; Kamm RD
    Proc Natl Acad Sci U S A; 2011 Jul; 108(27):11115-20. PubMed ID: 21690404
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfluidic device to control interstitial flow-mediated homotypic and heterotypic cellular communication.
    Alonzo LF; Moya ML; Shirure VS; George SC
    Lab Chip; 2015 Sep; 15(17):3521-9. PubMed ID: 26190172
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Blood flow can signal during angiogenesis not only through mechanotransduction, but also by affecting growth factor distribution.
    Ghaffari S; Leask RL; Jones EAV
    Angiogenesis; 2017 Aug; 20(3):373-384. PubMed ID: 28374123
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inverting angiogenesis with interstitial flow and chemokine matrix-binding affinity.
    Moure A; Vilanova G; Gomez H
    Sci Rep; 2022 Mar; 12(1):4237. PubMed ID: 35273299
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.