These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 28608243)

  • 1. Voluntary reduction of force variability via modulation of low-frequency oscillations.
    Park SH; Casamento-Moran A; Yacoubi B; Christou EA
    Exp Brain Res; 2017 Sep; 235(9):2717-2727. PubMed ID: 28608243
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Voluntary control of forward leaning posture relates to low-frequency neural inputs to the medial gastrocnemius muscle.
    Watanabe T; Nojima I; Sugiura H; Yacoubi B; Christou EA
    Gait Posture; 2019 Feb; 68():187-192. PubMed ID: 30497039
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Motor output oscillations with magnification of visual feedback in older adults.
    Park SH; Kwon M; Christou EA
    Neurosci Lett; 2017 Apr; 647():8-13. PubMed ID: 28300635
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Greater amount of visual feedback decreases force variability by reducing force oscillations from 0-1 and 3-7 Hz.
    Baweja HS; Kennedy DM; Vu J; Vaillancourt DE; Christou EA
    Eur J Appl Physiol; 2010 Mar; 108(5):935-43. PubMed ID: 19953262
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Force control is related to low-frequency oscillations in force and surface EMG.
    Moon H; Kim C; Kwon M; Chen YT; Onushko T; Lodha N; Christou EA
    PLoS One; 2014; 9(11):e109202. PubMed ID: 25372038
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-gain visual feedback exacerbates ankle movement variability in children.
    Moon H; Kim C; Kwon M; Chen YT; Fox E; Christou EA
    Exp Brain Res; 2015 May; 233(5):1597-606. PubMed ID: 25744054
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of oscillatory force tasks: Low-frequency oscillations in force and muscle activity.
    Park SH; Kim C; Yacoubi B; Christou EA
    Hum Mov Sci; 2019 Apr; 64():89-100. PubMed ID: 30690253
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulation of force below 1 Hz: age-associated differences and the effect of magnified visual feedback.
    Fox EJ; Baweja HS; Kim C; Kennedy DM; Vaillancourt DE; Christou EA
    PLoS One; 2013; 8(2):e55970. PubMed ID: 23409099
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The interaction of respiration and visual feedback on the control of force and neural activation of the agonist muscle.
    Baweja HS; Patel BK; Neto OP; Christou EA
    Hum Mov Sci; 2011 Dec; 30(6):1022-38. PubMed ID: 21546109
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of muscle fatigue as assessed by electromyography and mechanomyography during continuous and intermittent low-force contractions: effects of the feedback mode.
    Madeleine P; Jørgensen LV; Søgaard K; Arendt-Nielsen L; Sjøgaard G
    Eur J Appl Physiol; 2002 May; 87(1):28-37. PubMed ID: 12012073
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ipsilateral and contralateral responses following unimanual fatigue with and without illusionary mirror visual feedback.
    Carr JC; Bemben MG; Stock MS; DeFreitas JM
    J Neurophysiol; 2021 Jun; 125(6):2084-2093. PubMed ID: 33909484
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Visually guided targeting enhances bilateral force variability in healthy older adults.
    Kenway LC; Bisset LM; Kavanagh JJ
    Neurobiol Aging; 2016 Jan; 37():127-137. PubMed ID: 26521134
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnified visual feedback exacerbates positional variability in older adults due to altered modulation of the primary agonist muscle.
    Baweja HS; Kwon M; Christou EA
    Exp Brain Res; 2012 Oct; 222(4):355-64. PubMed ID: 22948735
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Age-associated impairement in endpoint accuracy of goal-directed contractions performed with two fingers is due to altered activation of the synergistic muscles.
    Chen YT; Pinto Neto O; de Miranda Marzullo AC; Kennedy DM; Fox EJ; Christou EA
    Exp Gerontol; 2012 Jul; 47(7):519-26. PubMed ID: 22580059
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coherence of EMG activity and single motor unit discharge patterns in human rhythmical force production.
    Sosnoff JJ; Vaillancourt DE; Larsson L; Newell KM
    Behav Brain Res; 2005 Mar; 158(2):301-10. PubMed ID: 15698897
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Speed but not amplitude of visual feedback exacerbates force variability in older adults.
    Kim C; Yacoubi B; Christou EA
    Exp Brain Res; 2018 Oct; 236(10):2563-2571. PubMed ID: 29936533
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Greater amount of visual information exacerbates force control in older adults during constant isometric contractions.
    Kennedy DM; Christou EA
    Exp Brain Res; 2011 Sep; 213(4):351-61. PubMed ID: 21800256
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Motor-unit activity differs with load type during a fatiguing contraction.
    Mottram CJ; Jakobi JM; Semmler JG; Enoka RM
    J Neurophysiol; 2005 Mar; 93(3):1381-92. PubMed ID: 15483059
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Motor control differs for increasing and releasing force.
    Park SH; Kwon M; Solis D; Lodha N; Christou EA
    J Neurophysiol; 2016 Jun; 115(6):2924-30. PubMed ID: 26961104
    [TBL] [Abstract][Full Text] [Related]  

  • 20. More Variability in Tibialis Anterior Function during the Adduction of the Foot than Dorsiflexion of the Ankle.
    Amiridis IG; Kannas T; Sahinis C; Negro F; Trypidakis G; Kellis E; Enoka RM
    Med Sci Sports Exerc; 2024 May; 56(5):851-859. PubMed ID: 38190382
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.