These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 28608337)

  • 1. Identification of ARGONAUTE/Small RNA Cleavage Sites by Degradome Sequencing.
    Baksa I; Szittya G
    Methods Mol Biol; 2017; 1640():113-128. PubMed ID: 28608337
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Immunoprecipitation and High-Throughput Sequencing of ARGONAUTE-Bound Target RNAs from Plants.
    Carbonell A
    Methods Mol Biol; 2017; 1640():93-112. PubMed ID: 28608336
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Degradome Sequencing in Plants.
    Lin SS; Chen Y; Lu MJ
    Methods Mol Biol; 2019; 1932():197-213. PubMed ID: 30701502
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Construction of Parallel Analysis of RNA Ends (PARE) libraries for the study of cleaved miRNA targets and the RNA degradome.
    German MA; Luo S; Schroth G; Meyers BC; Green PJ
    Nat Protoc; 2009; 4(3):356-62. PubMed ID: 19247285
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid construction of parallel analysis of RNA end (PARE) libraries for Illumina sequencing.
    Zhai J; Arikit S; Simon SA; Kingham BF; Meyers BC
    Methods; 2014 May; 67(1):84-90. PubMed ID: 23810899
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of the Uridylation of Both ARGONAUTE-Bound MiRNAs and 5' Cleavage Products of Their Target RNAs in Plants.
    Ren G; Wang X; Yu B
    Methods Mol Biol; 2017; 1640():23-37. PubMed ID: 28608332
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Beyond cleaved small RNA targets: unraveling the complexity of plant RNA degradome data.
    Hou CY; Wu MT; Lu SH; Hsing YI; Chen HM
    BMC Genomics; 2014 Jan; 15():15. PubMed ID: 24405808
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A reversed framework for the identification of microRNA-target pairs in plants.
    Shao C; Chen M; Meng Y
    Brief Bioinform; 2013 May; 14(3):293-301. PubMed ID: 22811545
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The use of high-throughput sequencing methods for plant microRNA research.
    Ma X; Tang Z; Qin J; Meng Y
    RNA Biol; 2015; 12(7):709-19. PubMed ID: 26016494
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-throughput degradome sequencing can be used to gain insights into microRNA precursor metabolism.
    Meng Y; Gou L; Chen D; Wu P; Chen M
    J Exp Bot; 2010 Sep; 61(14):3833-7. PubMed ID: 20643809
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In Vitro Analysis of ARGONAUTE-Mediated Target Cleavage and Translational Repression in Plants.
    Tomari Y; Iwakawa HO
    Methods Mol Biol; 2017; 1640():55-71. PubMed ID: 28608334
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of soybean seed developmental stage-specific and tissue-specific miRNA targets by degradome sequencing.
    Shamimuzzaman M; Vodkin L
    BMC Genomics; 2012 Jul; 13():310. PubMed ID: 22799740
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Is Argonaute 1 the only effective slicer of small RNA-mediated regulation of gene expression in plants?
    Shao C; Dong AW; Ma X; Meng Y
    J Exp Bot; 2014 Dec; 65(22):6293-9. PubMed ID: 25240066
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PAREameters: a tool for computational inference of plant miRNA-mRNA targeting rules using small RNA and degradome sequencing data.
    Thody J; Moulton V; Mohorianu I
    Nucleic Acids Res; 2020 Mar; 48(5):2258-2270. PubMed ID: 31943065
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of Taxus microRNAs and their targets with high-throughput sequencing and degradome analysis.
    Hao DC; Yang L; Xiao PG; Liu M
    Physiol Plant; 2012 Dec; 146(4):388-403. PubMed ID: 22708792
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of miRNAs and their targets through high-throughput sequencing and degradome analysis in male and female Asparagus officinalis.
    Chen J; Zheng Y; Qin L; Wang Y; Chen L; He Y; Fei Z; Lu G
    BMC Plant Biol; 2016 Apr; 16():80. PubMed ID: 27068118
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An improved method of constructing degradome library suitable for sequencing using Illumina platform.
    Li YF; Zhao M; Wang M; Guo J; Wang L; Ji J; Qiu Z; Zheng Y; Sunkar R
    Plant Methods; 2019; 15():134. PubMed ID: 31832076
    [TBL] [Abstract][Full Text] [Related]  

  • 18. More than meets the eye? Factors that affect target selection by plant miRNAs and heterochromatic siRNAs.
    Wang F; Polydore S; Axtell MJ
    Curr Opin Plant Biol; 2015 Oct; 27():118-24. PubMed ID: 26246393
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A transcriptome-wide study on the microRNA- and the Argonaute 1-enriched small RNA-mediated regulatory networks involved in plant leaf senescence.
    Qin J; Ma X; Yi Z; Tang Z; Meng Y
    Plant Biol (Stuttg); 2016 Mar; 18(2):197-205. PubMed ID: 26206233
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome-wide characterization of rice black streaked dwarf virus-responsive microRNAs in rice leaves and roots by small RNA and degradome sequencing.
    Sun Z; He Y; Li J; Wang X; Chen J
    Plant Cell Physiol; 2015 Apr; 56(4):688-99. PubMed ID: 25535197
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.