These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 28608363)

  • 1. MiSynPat: An integrated knowledge base linking clinical, genetic, and structural data for disease-causing mutations in human mitochondrial aminoacyl-tRNA synthetases.
    Moulinier L; Ripp R; Castillo G; Poch O; Sissler M
    Hum Mutat; 2017 Oct; 38(10):1316-1324. PubMed ID: 28608363
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolutionary and structural annotation of disease-associated mutations in human aminoacyl-tRNA synthetases.
    Datt M; Sharma A
    BMC Genomics; 2014 Dec; 15(1):1063. PubMed ID: 25476837
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pathogenic implications of human mitochondrial aminoacyl-tRNA synthetases.
    Schwenzer H; Zoll J; Florentz C; Sissler M
    Top Curr Chem; 2014; 344():247-92. PubMed ID: 23824528
    [TBL] [Abstract][Full Text] [Related]  

  • 4. When a common biological role does not imply common disease outcomes: Disparate pathology linked to human mitochondrial aminoacyl-tRNA synthetases.
    González-Serrano LE; Chihade JW; Sissler M
    J Biol Chem; 2019 Apr; 294(14):5309-5320. PubMed ID: 30647134
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intra-protein compensatory mutations analysis highlights the tRNA recognition regions in aminoacyl-tRNA synthetases.
    Frenkel-Morgenstern M; Tworowski D; Klipcan L; Safro M
    J Biomol Struct Dyn; 2009 Oct; 27(2):115-26. PubMed ID: 19583438
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aminoacyl tRNA synthetases as malarial drug targets: a comparative bioinformatics study.
    Nyamai DW; Tastan Bishop Ö
    Malar J; 2019 Feb; 18(1):34. PubMed ID: 30728021
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The aminoacyl-tRNA Synthetase Data Bank (AARSDB).
    Szymanski M; Barciszewski J
    Nucleic Acids Res; 1999 Jan; 27(1):332-5. PubMed ID: 9847219
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two proteomic methodologies for defining N-termini of mature human mitochondrial aminoacyl-tRNA synthetases.
    Carapito C; Kuhn L; Karim L; Rompais M; Rabilloud T; Schwenzer H; Sissler M
    Methods; 2017 Jan; 113():111-119. PubMed ID: 27793688
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent Advances in Mitochondrial Aminoacyl-tRNA Synthetases and Disease.
    Sissler M; González-Serrano LE; Westhof E
    Trends Mol Med; 2017 Aug; 23(8):693-708. PubMed ID: 28716624
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hearing impairment-associated KARS mutations lead to defects in aminoacylation of both cytoplasmic and mitochondrial tRNA
    Wang Y; Zhou JB; Zeng QY; Wu S; Xue MQ; Fang P; Wang ED; Zhou XL
    Sci China Life Sci; 2020 Aug; 63(8):1227-1239. PubMed ID: 32189241
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolution of aminoacyl-tRNA synthetases--analysis of unique domain architectures and phylogenetic trees reveals a complex history of horizontal gene transfer events.
    Wolf YI; Aravind L; Grishin NV; Koonin EV
    Genome Res; 1999 Aug; 9(8):689-710. PubMed ID: 10447505
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aminoacyl-tRNA synthetases database.
    Szymanski M; Deniziak MA; Barciszewski J
    Nucleic Acids Res; 2001 Jan; 29(1):288-90. PubMed ID: 11125115
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction and classification of aminoacyl tRNA synthetases using PROSITE domains.
    Panwar B; Raghava GP
    BMC Genomics; 2010 Sep; 11():507. PubMed ID: 20860794
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amino acid biogenesis, evolution of the genetic code and aminoacyl-tRNA synthetases.
    Klipcan L; Safro M
    J Theor Biol; 2004 Jun; 228(3):389-96. PubMed ID: 15135037
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel and unique domains in aminoacyl-tRNA synthetases from human fungal pathogens Aspergillus niger, Candida albicans and Cryptococcus neoformans.
    Datt M; Sharma A
    BMC Genomics; 2014 Dec; 15(1):1069. PubMed ID: 25479903
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitochondrial aminoacyl-tRNA synthetase disorders: an emerging group of developmental disorders of myelination.
    Fine AS; Nemeth CL; Kaufman ML; Fatemi A
    J Neurodev Disord; 2019 Dec; 11(1):29. PubMed ID: 31839000
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three human aminoacyl-tRNA synthetases have distinct sub-mitochondrial localizations that are unaffected by disease-associated mutations.
    González-Serrano LE; Karim L; Pierre F; Schwenzer H; Rötig A; Munnich A; Sissler M
    J Biol Chem; 2018 Aug; 293(35):13604-13615. PubMed ID: 30006346
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aminoacyl-tRNA synthetases: Structure, function, and drug discovery.
    Rajendran V; Kalita P; Shukla H; Kumar A; Tripathi T
    Int J Biol Macromol; 2018 May; 111():400-414. PubMed ID: 29305884
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human aminoacyl-tRNA synthetases in diseases of the nervous system.
    Ognjenović J; Simonović M
    RNA Biol; 2018; 15(4-5):623-634. PubMed ID: 28534666
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of aminoacyl-tRNA synthetases in infectious diseases and targets for therapeutic development.
    Dewan V; Reader J; Forsyth KM
    Top Curr Chem; 2014; 344():293-329. PubMed ID: 23666077
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.