These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 28608588)
1. Experimental and computational characterization on the binding of two fluoroquinolones to bovine hemoglobin. Qin P; Pan X; Liu R; Qiu J; Fang X J Mol Recognit; 2017 Dec; 30(12):. PubMed ID: 28608588 [TBL] [Abstract][Full Text] [Related]
2. Toxic interaction mechanism of two fluoroquinolones with serum albumin by spectroscopic and computational methods. Qin P; Pan X; Liu R; Hu C; Dong Y J Environ Sci Health B; 2017 Nov; 52(11):833-841. PubMed ID: 28937847 [TBL] [Abstract][Full Text] [Related]
3. Probing the binding of two fluoroquinolones to lysozyme: a combined spectroscopic and docking study. Qin P; Su B; Liu R Mol Biosyst; 2012 Apr; 8(4):1222-9. PubMed ID: 22290106 [TBL] [Abstract][Full Text] [Related]
4. Characterization on the toxic mechanism of two fluoroquinolones to trypsin by spectroscopic and computational methods. Guo Y; Qin P; Wang C; Pan X; Dong X; Zong W J Environ Sci Health B; 2020; 55(3):230-238. PubMed ID: 31679438 [TBL] [Abstract][Full Text] [Related]
5. Binding of the veterinary drug tetracycline to bovine hemoglobin and toxicological implications. Chi Z; Liu R; You H; Wang D J Environ Sci Health B; 2014; 49(12):978-84. PubMed ID: 25310814 [TBL] [Abstract][Full Text] [Related]
6. Oxidative stress response of two fluoroquinolones with catalase and erythrocytes: a combined molecular and cellular study. Qin P; Liu R J Hazard Mater; 2013 May; 252-253():321-9. PubMed ID: 23542600 [TBL] [Abstract][Full Text] [Related]
7. The study on interactions between levofloxacin and model proteins by using multi-spectroscopic and molecular docking methods. Fang Q; Guo C; Wang Y; Liu Y J Biomol Struct Dyn; 2018 Jun; 36(8):2032-2044. PubMed ID: 28604271 [TBL] [Abstract][Full Text] [Related]
8. Spectroscopic and molecular modeling studies on the interactions of fluoranthene with bovine hemoglobin. Cao XY; Wang S; Tian SQ; Lou H; Kong YC; Yang ZJ; Liu JL Spectrochim Acta A Mol Biomol Spectrosc; 2018 Oct; 203():301-307. PubMed ID: 29879645 [TBL] [Abstract][Full Text] [Related]
9. Interaction of bisphenol A with bovine hemoglobin using spectroscopic and molecular modeling methods. Fang X; Cao S; Liu R Appl Spectrosc; 2011 Nov; 65(11):1250-3. PubMed ID: 22054083 [TBL] [Abstract][Full Text] [Related]
10. Molecular recognition of bio-active flavonoids quercetin and rutin by bovine hemoglobin: an overview of the binding mechanism, thermodynamics and structural aspects through multi-spectroscopic and molecular dynamics simulation studies. Das S; Bora N; Rohman MA; Sharma R; Jha AN; Singha Roy A Phys Chem Chem Phys; 2018 Aug; 20(33):21668-21684. PubMed ID: 30101248 [TBL] [Abstract][Full Text] [Related]
11. Toxic interaction mechanism between oxytetracycline and bovine hemoglobin. Chi Z; Liu R; Yang B; Zhang H J Hazard Mater; 2010 Aug; 180(1-3):741-7. PubMed ID: 20494513 [TBL] [Abstract][Full Text] [Related]
12. Characterization of non-covalent binding of 6-hydroxyflavone and 5,7-dihydroxyflavone with bovine hemoglobin: Multi-spectroscopic and molecular docking analyses. Das S; Karn A; Sarmah R; Rohman MA; Koley S; Ghosh P; Roy AS J Photochem Photobiol B; 2018 Jan; 178():40-52. PubMed ID: 29102848 [TBL] [Abstract][Full Text] [Related]
13. Exploring the biophysical aspects and binding mechanism of thionine with bovine hemoglobin by optical spectroscopic and molecular docking methods. Shanmugaraj K; Anandakumar S; Ilanchelian M J Photochem Photobiol B; 2014 Feb; 131():43-52. PubMed ID: 24486625 [TBL] [Abstract][Full Text] [Related]
14. Spectroscopic characterization, calorimetric study and molecular docking to evaluate the bioconjugation of maltol with hemoglobin. Zhao L; Zhang H; Zhang J; Zong W; Liu R Luminescence; 2019 Mar; 34(2):290-296. PubMed ID: 30723991 [TBL] [Abstract][Full Text] [Related]
15. Molecular insight into the binding aspects of benzo[c]phenanthridine alkaloid nitidine with bovine hemoglobin: A biophysical exploration. Bhuiya S; Chowdhury S; Das S Spectrochim Acta A Mol Biomol Spectrosc; 2019 Dec; 223():117293. PubMed ID: 31260885 [TBL] [Abstract][Full Text] [Related]
16. A biophysical probe on the binding of 2-mercaptothioazoline to bovine hemoglobin. Zou L; Zhang X; Shao M; Sun R; Zhu Y; Zou B; Huang Z; Liu H; Teng Y Environ Sci Pollut Res Int; 2019 Jan; 26(1):208-214. PubMed ID: 30387064 [TBL] [Abstract][Full Text] [Related]
17. Investigation on the interaction of the toxicant, gentian violet, with bovine hemoglobin. Liu Y; Lin J; Chen M; Song L Food Chem Toxicol; 2013 Aug; 58():264-72. PubMed ID: 23643798 [TBL] [Abstract][Full Text] [Related]
18. Understanding the structure and conformation of bovine hemoglobin in presence of the drug hydroxyurea: multi-spectroscopic studies supported by docking and molecular dynamics simulation. Saha S; Chowdhury J J Biomol Struct Dyn; 2021 Jul; 39(10):3533-3547. PubMed ID: 32397828 [TBL] [Abstract][Full Text] [Related]
19. Probing the interaction between levamlodipine and hemoglobin based on spectroscopic and molecular docking methods. Xu L; Liu Z; Liao T; Tuo X Spectrochim Acta A Mol Biomol Spectrosc; 2019 Dec; 223():117306. PubMed ID: 31255862 [TBL] [Abstract][Full Text] [Related]
20. Spectroscopic investigation on the toxic interactions of Ni2+ with bovine hemoglobin. Wang L; Liu R; Chi Z; Yang B; Zhang P; Wang M Spectrochim Acta A Mol Biomol Spectrosc; 2010 Jul; 76(2):155-60. PubMed ID: 20400367 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]