These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 28608675)

  • 1. Three-Dimensional Printed Graphene Foams.
    Sha J; Li Y; Villegas Salvatierra R; Wang T; Dong P; Ji Y; Lee SK; Zhang C; Zhang J; Smith RH; Ajayan PM; Lou J; Zhao N; Tour JM
    ACS Nano; 2017 Jul; 11(7):6860-6867. PubMed ID: 28608675
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-Dimensional Rebar Graphene.
    Sha J; Salvatierra RV; Dong P; Li Y; Lee SK; Wang T; Zhang C; Zhang J; Ji Y; Ajayan PM; Lou J; Zhao N; Tour JM
    ACS Appl Mater Interfaces; 2017 Mar; 9(8):7376-7384. PubMed ID: 28157287
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation of Three-Dimensional Graphene Foams Using Powder Metallurgy Templates.
    Sha J; Gao C; Lee SK; Li Y; Zhao N; Tour JM
    ACS Nano; 2016 Jan; 10(1):1411-6. PubMed ID: 26678869
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Laminated Object Manufacturing of 3D-Printed Laser-Induced Graphene Foams.
    Luong DX; Subramanian AK; Silva GAL; Yoon J; Cofer S; Yang K; Owuor PS; Wang T; Wang Z; Lou J; Ajayan PM; Tour JM
    Adv Mater; 2018 Jul; 30(28):e1707416. PubMed ID: 29845669
    [TBL] [Abstract][Full Text] [Related]  

  • 5. One-Pot Sintering Strategy for Efficient Fabrication of High-Performance and Multifunctional Graphene Foams.
    Li Y; Zhang HB; Zhang L; Shen B; Zhai W; Yu ZZ; Zheng W
    ACS Appl Mater Interfaces; 2017 Apr; 9(15):13323-13330. PubMed ID: 28350156
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multimaterial 3D Printing of Graphene-Based Electrodes for Electrochemical Energy Storage Using Thermoresponsive Inks.
    Rocha VG; García-Tuñón E; Botas C; Markoulidis F; Feilden E; D'Elia E; Ni N; Shaffer M; Saiz E
    ACS Appl Mater Interfaces; 2017 Oct; 9(42):37136-37145. PubMed ID: 28920439
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D Printed Graphene Electrodes' Electrochemical Activation.
    Browne MP; Novotný F; Sofer Z; Pumera M
    ACS Appl Mater Interfaces; 2018 Nov; 10(46):40294-40301. PubMed ID: 30398834
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Size of graphene sheets determines the structural and mechanical properties of 3D graphene foams.
    Shen Z; Ye H; Zhou C; Kröger M; Li Y
    Nanotechnology; 2018 Mar; 29(10):104001. PubMed ID: 29311421
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CVD Synthesis of 3D-Shaped 3D Graphene Using a 3D-Printed Nickel-PLGA Catalyst Precursor.
    Kondapalli VKR; He X; Khosravifar M; Khodabakhsh S; Collins B; Yarmolenko S; Paz Y Puente A; Shanov V
    ACS Omega; 2021 Nov; 6(43):29009-29021. PubMed ID: 34746590
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polymer-Enriched 3D Graphene Foams for Biomedical Applications.
    Wang JK; Xiong GM; Zhu M; Özyilmaz B; Castro Neto AH; Tan NS; Choong C
    ACS Appl Mater Interfaces; 2015 Apr; 7(15):8275-83. PubMed ID: 25822669
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly conductive three-dimensional MnO2-carbon nanotube-graphene-Ni hybrid foam as a binder-free supercapacitor electrode.
    Zhu G; He Z; Chen J; Zhao J; Feng X; Ma Y; Fan Q; Wang L; Huang W
    Nanoscale; 2014 Jan; 6(2):1079-85. PubMed ID: 24296659
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three Dimensionally Free-Formable Graphene Foam with Designed Structures for Energy and Environmental Applications.
    Xu X; Guan C; Xu L; Tan YH; Zhang D; Wang Y; Zhang H; Blackwood DJ; Wang J; Li M; Ding J
    ACS Nano; 2020 Jan; 14(1):937-947. PubMed ID: 31891478
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aqueous Inks of Pristine Graphene for 3D Printed Microsupercapacitors with High Capacitance.
    Tagliaferri S; Nagaraju G; Panagiotopoulos A; Och M; Cheng G; Iacoviello F; Mattevi C
    ACS Nano; 2021 Sep; 15(9):15342-15353. PubMed ID: 34491713
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional printing of high-content graphene scaffolds for electronic and biomedical applications.
    Jakus AE; Secor EB; Rutz AL; Jordan SW; Hersam MC; Shah RN
    ACS Nano; 2015; 9(4):4636-48. PubMed ID: 25858670
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D Printed Graphene and Graphene/Polymer Composites for Multifunctional Applications.
    Wu Y; An C; Guo Y
    Materials (Basel); 2023 Aug; 16(16):. PubMed ID: 37629973
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly conductive, mechanically strong graphene monolith assembled by three-dimensional printing of large graphene oxide.
    Ma J; Wang P; Dong L; Ruan Y; Lu H
    J Colloid Interface Sci; 2019 Jan; 534():12-19. PubMed ID: 30196197
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Laser-Induced Graphene.
    Ye R; James DK; Tour JM
    Acc Chem Res; 2018 Jul; 51(7):1609-1620. PubMed ID: 29924584
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrically Conducting and Mechanically Strong Graphene-Polylactic Acid Composites for 3D Printing.
    Kim M; Jeong JH; Lee JY; Capasso A; Bonaccorso F; Kang SH; Lee YK; Lee GH
    ACS Appl Mater Interfaces; 2019 Mar; 11(12):11841-11848. PubMed ID: 30810305
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Well-Ordered Oxygen-Deficient CoMoO
    Chi K; Zhang Z; Lv Q; Xie C; Xiao J; Xiao F; Wang S
    ACS Appl Mater Interfaces; 2017 Feb; 9(7):6044-6053. PubMed ID: 28102070
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Progress in 3D Printing of Carbon Materials for Energy-Related Applications.
    Fu K; Yao Y; Dai J; Hu L
    Adv Mater; 2017 Mar; 29(9):. PubMed ID: 27982475
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.