These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 28608678)

  • 1. New Insights into the Stability of Silver Sulfide Nanoparticles in Surface Water: Dissolution through Hypochlorite Oxidation.
    Li L; Xu Z; Wimmer A; Tian Q; Wang X
    Environ Sci Technol; 2017 Jul; 51(14):7920-7927. PubMed ID: 28608678
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of silver sulfide nanoparticles on photochemical degradation of dissolved organic matter in surface water.
    Li L; Zhu B; Yan X; Zhou Q; Wang Y; Jiang G
    Chemosphere; 2018 Feb; 193():1113-1119. PubMed ID: 29874739
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Re-evaluation of stability and toxicity of silver sulfide nanoparticle in environmental water: Oxidative dissolution by manganese oxide.
    Shi E; Xu Z; Zhang X; Yang X; Liu Q; Zhang H; Wimmer A; Li L
    Environ Pollut; 2018 Dec; 243(Pt B):1242-1251. PubMed ID: 30267921
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stability of single dispersed silver nanoparticles in natural and synthetic freshwaters: Effects of dissolved oxygen.
    Zou X; Li P; Lou J; Fu X; Zhang H
    Environ Pollut; 2017 Nov; 230():674-682. PubMed ID: 28715772
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation of Nanosilver from Silver Sulfide Nanoparticles in Natural Waters by Photoinduced Fe(II, III) Redox Cycling.
    Li L; Zhou Q; Geng F; Wang Y; Jiang G
    Environ Sci Technol; 2016 Dec; 50(24):13342-13350. PubMed ID: 27993063
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rethinking Stability of Silver Sulfide Nanoparticles (Ag2S-NPs) in the Aquatic Environment: Photoinduced Transformation of Ag2S-NPs in the Presence of Fe(III).
    Li L; Wang Y; Liu Q; Jiang G
    Environ Sci Technol; 2016 Jan; 50(1):188-96. PubMed ID: 26606372
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The impact of size on the fate and toxicity of nanoparticulate silver in aquatic systems.
    Angel BM; Batley GE; Jarolimek CV; Rogers NJ
    Chemosphere; 2013 Sep; 93(2):359-65. PubMed ID: 23732009
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetics and mechanisms of nanosilver oxysulfidation.
    Liu J; Pennell KG; Hurt RH
    Environ Sci Technol; 2011 Sep; 45(17):7345-53. PubMed ID: 21770469
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Silver nanoparticle dissolution in the presence of ligands and of hydrogen peroxide.
    Sigg L; Lindauer U
    Environ Pollut; 2015 Nov; 206():582-7. PubMed ID: 26310977
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transformations of citrate and Tween coated silver nanoparticles reacted with Na₂S.
    Baalousha M; Arkill KP; Romer I; Palmer RE; Lead JR
    Sci Total Environ; 2015 Jan; 502():344-53. PubMed ID: 25262296
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidative degradation of bisphenol A and 17α-ethinyl estradiol by Fenton-like activity of silver nanoparticles in aqueous solution.
    Park CM; Heo J; Yoon Y
    Chemosphere; 2017 Feb; 168():617-622. PubMed ID: 27838031
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxidative Dissolution of Silver Nanoparticles by Chlorine: Implications to Silver Nanoparticle Fate and Toxicity.
    Garg S; Rong H; Miller CJ; Waite TD
    Environ Sci Technol; 2016 Apr; 50(7):3890-6. PubMed ID: 26986484
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sulfidation processes of PVP-coated silver nanoparticles in aqueous solution: impact on dissolution rate.
    Levard C; Reinsch BC; Michel FM; Oumahi C; Lowry GV; Brown GE
    Environ Sci Technol; 2011 Jun; 45(12):5260-6. PubMed ID: 21598969
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Size-controlled dissolution of silver nanoparticles at neutral and acidic pH conditions: kinetics and size changes.
    Peretyazhko TS; Zhang Q; Colvin VL
    Environ Sci Technol; 2014 Oct; 48(20):11954-61. PubMed ID: 25265014
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transport, retention, and long-term release behavior of polymer-coated silver nanoparticles in saturated quartz sand: The impact of natural organic matters and electrolyte.
    Hou J; Zhang M; Wang P; Wang C; Miao L; Xu Y; You G; Lv B; Yang Y; Liu Z
    Environ Pollut; 2017 Oct; 229():49-59. PubMed ID: 28577382
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of daylight on the fate of silver and zinc oxide nanoparticles in natural aquatic environments.
    Odzak N; Kistler D; Sigg L
    Environ Pollut; 2017 Jul; 226():1-11. PubMed ID: 28395184
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Copper(I) Promotes Silver Sulfide Dissolution and Increases Silver Phytoavailability.
    Huang Y; Liu C; Cui P; Dang F; Li M; Xing B; Zhou D
    Environ Sci Technol; 2020 May; 54(9):5589-5597. PubMed ID: 32275397
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reaction of silver nanoparticles in the disinfection process.
    Yuan Z; Chen Y; Li T; Yu CP
    Chemosphere; 2013 Oct; 93(4):619-25. PubMed ID: 23830116
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of chlorination on silver elution from ceramic water filters.
    Lyon-Marion BA; Mittelman AM; Rayner J; Lantagne DS; Pennell KD
    Water Res; 2018 Oct; 142():471-479. PubMed ID: 29920457
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of Natural Organic Matter Properties on the Dissolution Kinetics of Zinc Oxide Nanoparticles.
    Jiang C; Aiken GR; Hsu-Kim H
    Environ Sci Technol; 2015 Oct; 49(19):11476-84. PubMed ID: 26355264
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.