These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 28608878)

  • 1. Structural evolution and dielectric properties of suspensions of carbon nanotubes in nematic liquid crystals.
    Tomylko S; Yaroshchuk O; Koval'chuk O; Lebovka N
    Phys Chem Chem Phys; 2017 Jun; 19(25):16456-16463. PubMed ID: 28608878
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two-step electrical percolation in nematic liquid crystals filled with multiwalled carbon nanotubes.
    Tomylko S; Yaroshchuk O; Lebovka N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):012502. PubMed ID: 26274190
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Laponite assisted dispersion of carbon nanotubes in water.
    Loginov M; Lebovka N; Vorobiev E
    J Colloid Interface Sci; 2012 Jan; 365(1):127-36. PubMed ID: 21968399
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improvement of toughness and electrical properties of epoxy composites with carbon nanotubes prepared by industrially relevant processes.
    Hollertz R; Chatterjee S; Gutmann H; Geiger T; Nüesch FA; Chu BT
    Nanotechnology; 2011 Mar; 22(12):125702. PubMed ID: 21317490
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Studies of nanocomposites of carbon nanotubes and a negative dielectric anisotropy liquid crystal.
    Kalakonda P; Basu R; Nemitz IR; Rosenblatt C; Iannacchione GS
    J Chem Phys; 2014 Mar; 140(10):104908. PubMed ID: 24628206
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrical percolation thresholds of semiconducting single-walled carbon nanotube networks in field-effect transistors.
    Jang HK; Jin JE; Choi JH; Kang PS; Kim DH; Kim GT
    Phys Chem Chem Phys; 2015 Mar; 17(10):6874-80. PubMed ID: 25673219
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrical percolation networks of carbon nanotubes in a shear flow.
    Kwon G; Heo Y; Shin K; Sung BJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 1):011143. PubMed ID: 22400548
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unusual double four-lobe textures generated by the motion of carbon nanotubes in a nematic liquid crystal.
    Jeong SJ; Sureshkumar P; Jeong KU; Srivastava AK; Lee SH; Jeong SH; Lee YH; Lu R; Wu ST
    Opt Express; 2007 Sep; 15(18):11698-705. PubMed ID: 19547530
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the effect of carbon nanotubes on properties of liquid crystals.
    Schymura S; Scalia G
    Philos Trans A Math Phys Eng Sci; 2013 Apr; 371(1988):20120261. PubMed ID: 23459963
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Liquid crystallinity of carbon nanotubes.
    Chang C; Zhao Y; Liu Y; An L
    RSC Adv; 2018 Apr; 8(28):15780-15795. PubMed ID: 35539493
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrically conductive polypropylene nanocomposites with negative permittivity at low carbon nanotube loading levels.
    Zhang X; Yan X; He Q; Wei H; Long J; Guo J; Gu H; Yu J; Liu J; Ding D; Sun L; Wei S; Guo Z
    ACS Appl Mater Interfaces; 2015 Mar; 7(11):6125-38. PubMed ID: 25719265
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flow of suspensions of carbon nanotubes carrying phase change materials through microchannels and heat transfer enhancement.
    Sinha-Ray S; Sinha-Ray S; Sriram H; Yarin AL
    Lab Chip; 2014 Feb; 14(3):494-508. PubMed ID: 24288141
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dispersing carbon nanotubes by chiral network surfactants.
    Lin P; Cong Y; Zhang B
    ACS Appl Mater Interfaces; 2015 Apr; 7(12):6724-32. PubMed ID: 25789867
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Liquid crystal-carbon nanotubes mixtures.
    Popa-Nita V; Kralj S
    J Chem Phys; 2010 Jan; 132(2):024902. PubMed ID: 20095704
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Colloidal stability of suspended and agglomerate structures of settled carbon nanotubes in different aqueous matrices.
    Schwyzer I; Kaegi R; Sigg L; Nowack B
    Water Res; 2013 Aug; 47(12):3910-20. PubMed ID: 23582307
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The structure and the percolation behavior of a mixture of carbon nanotubes and molecular junctions: a Monte Carlo simulation study.
    Kwon G; Jung HT; Shin K; Sung BJ
    J Nanosci Nanotechnol; 2011 May; 11(5):4317-23. PubMed ID: 21780449
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced photocatalytic activity of mesoporous TiO2 aggregates by embedding carbon nanotubes as electron-transfer channel.
    Yu J; Ma T; Liu S
    Phys Chem Chem Phys; 2011 Feb; 13(8):3491-501. PubMed ID: 21173966
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dissolving and aligning carbon nanotubes in thermotropic liquid crystals.
    Ji Y; Huang YY; Terentjev EM
    Langmuir; 2011 Nov; 27(21):13254-60. PubMed ID: 21923174
    [TBL] [Abstract][Full Text] [Related]  

  • 19. AC conductivity of selectively located carbon nanotubes in poly(epsilon-caprolactone)/polylactide blend nanocomposites.
    Laredo E; Grimau M; Bello A; Wu DF; Zhang YS; Lin DP
    Biomacromolecules; 2010 May; 11(5):1339-47. PubMed ID: 20380370
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CNT loading into cationic cholesterol suspensions show improved DNA binding and serum stability and ability to internalize into cancer cells.
    Chhikara BS; Misra SK; Bhattacharya S
    Nanotechnology; 2012 Feb; 23(6):065101. PubMed ID: 22248909
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.