BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 2860926)

  • 1. Regulation of diamine oxidase expression by beta 2-adrenoceptors in normal and hypertrophic rat kidney.
    Desiderio MA; Sessa A; Perin A
    Biochim Biophys Acta; 1985 Jun; 845(3):463-8. PubMed ID: 2860926
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Induction of diamine oxidase activity in rat kidney during compensatory hypertrophy.
    Desiderio MA; Sessa A; Perin A
    Biochim Biophys Acta; 1982 Feb; 714(2):243-9. PubMed ID: 6799006
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polyamine levels and diamine oxidase activity in hypertrophic heart of spontaneously hypertensive rats and of rats treated with isoproterenol.
    Perin A; Sessa A; Desiderio MA
    Biochim Biophys Acta; 1983 Feb; 755(3):344-51. PubMed ID: 6218830
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alpha and beta adrenoceptors mediate the inhibitory effect of epinephrine on the mucosal uptake of phenylalanine in the rat jejunum.
    Kreydiyyeh SI
    Can J Physiol Pharmacol; 1997 Dec; 75(12):1312-5. PubMed ID: 9534939
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of postnatal beta-adrenergic receptor/adenylate cyclase development by prenatal agonist stimulation and steroids: alterations in rat kidney and lung after exposure to terbutaline or dexamethasone.
    Kudlacz EM; Navarro HA; Kavlock RJ; Slotkin TA
    J Dev Physiol; 1990 Nov; 14(5):273-81. PubMed ID: 1966109
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stimulation of anion secretion by beta-adrenoceptors in the mouse endometrial epithelium.
    Chan HC; Fong SK; So SC; Chung YW; Wong PY
    J Physiol; 1997 Jun; 501 ( Pt 3)(Pt 3):517-25. PubMed ID: 9218212
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thyroid hormone differentially regulates development of beta-adrenergic receptors, adenylate cyclase and ornithine decarboxylase in rat heart and kidney.
    Pracyk JB; Slotkin TA
    J Dev Physiol; 1991 Oct; 16(4):251-61. PubMed ID: 1667405
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stimulation of hepatic and renal diamine oxidase activity after acute ethanol administration.
    Sessa A; Desiderio MA; Perin A
    Biochim Biophys Acta; 1984 Sep; 801(2):285-9. PubMed ID: 6433991
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Developmental changes of beta-adrenergic receptor-linked adenylate cyclase of rat liver.
    Katz MS; Boland SR; Schmidt SJ
    Am J Physiol; 1985 Jun; 248(6 Pt 1):E712-8. PubMed ID: 2860808
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ontogeny of regulatory mechanisms for beta-adrenoceptor control of rat cardiac adenylyl cyclase: targeting of G-proteins and the cyclase catalytic subunit.
    Zeiders JL; Seidler FJ; Slotkin TA
    J Mol Cell Cardiol; 1997 Feb; 29(2):603-15. PubMed ID: 9140819
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of PKC-ζ in NADPH oxidase-PKCα-Giα axis dependent inhibition of β-adrenergic response by U46619 in pulmonary artery smooth muscle cells.
    Chakraborti S; Roy S; Mandal A; Chowdhury A; Chakraborti T
    Arch Biochem Biophys; 2013 Dec; 540(1-2):133-44. PubMed ID: 24184446
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Response of tissue diamine oxidase activity to polyamine administration.
    Perin A; Sessa A; Desiderio MA
    Biochem J; 1986 Feb; 234(1):119-23. PubMed ID: 3085656
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control of adenylate cyclase activity in developing rat heart and liver: effects of prenatal exposure to terbutaline or dexamethasone.
    Navarro HA; Kudlacz EM; Slotkin TA
    Biol Neonate; 1991; 60(2):127-36. PubMed ID: 1657219
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reserpine up-regulation of rat renal cortical beta adrenergic receptors is independent of its effect on the sympathetic nervous system.
    Fortin TL; Sundaresan PR
    J Pharmacol Exp Ther; 1990 Jun; 253(3):913-20. PubMed ID: 1972754
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Noradrenergic agonists and antagonists: effects on avoidance behaviour in rats.
    Obersztyn M; Kostowski W
    Acta Physiol Pol; 1983; 34(4):401-7. PubMed ID: 6145294
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential effects of epinephrine and norepinephrine on cAMP response and g(i3)alpha protein expression in cultured sympathetic neurons.
    Shivachar AC; Eikenburg DC
    J Pharmacol Exp Ther; 1999 Oct; 291(1):258-64. PubMed ID: 10490912
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo desensitization of the beta, but not the alpha 2-adrenoreceptor-coupled-adenylate cyclase system in hamster white adipocytes after administration of epinephrine.
    Pecquery R; Leneveu MC; Giudicelli Y
    Endocrinology; 1984 May; 114(5):1576-83. PubMed ID: 6325124
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Beta-adrenergic signal transduction following carvedilol treatment in hypertensive cardiac hypertrophy.
    Böhm M; Ettelbrück S; Flesch M; van Gilst WH; Knorr A; Maack C; Pinto YM; Paul M; Teisman AC; Zolk O
    Cardiovasc Res; 1998 Oct; 40(1):146-55. PubMed ID: 9876327
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Beta-adrenoceptor-linked signal transduction in ischemic-reperfused heart and scavenging of oxyradicals.
    Persad S; Takeda S; Panagia V; Dhalla NS
    J Mol Cell Cardiol; 1997 Feb; 29(2):545-58. PubMed ID: 9140814
    [TBL] [Abstract][Full Text] [Related]  

  • 20. cAMP-mediated beta-adrenergic signaling negatively regulates Gq-coupled receptor-mediated fetal gene response in cardiomyocytes.
    Patrizio M; Vago V; Musumeci M; Fecchi K; Sposi NM; Mattei E; Catalano L; Stati T; Marano G
    J Mol Cell Cardiol; 2008 Dec; 45(6):761-9. PubMed ID: 18851973
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.