BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 28609371)

  • 41. MicroPET/CT imaging of patient-derived pancreatic cancer xenografts implanted subcutaneously or orthotopically in NOD-scid mice using (64)Cu-NOTA-panitumumab F(ab')2 fragments.
    Boyle AJ; Cao PJ; Hedley DW; Sidhu SS; Winnik MA; Reilly RM
    Nucl Med Biol; 2015 Feb; 42(2):71-7. PubMed ID: 25456837
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Local and Systemic Cytokine Profiling for Pancreatic Ductal Adenocarcinoma to Study Cancer Cachexia in an Era of Precision Medicine.
    Gerber MH; Underwood PW; Judge SM; Delitto D; Delitto AE; Nosacka RL; DiVita BB; Thomas RM; Permuth JB; Hughes SJ; Wallet SM; Judge AR; Trevino JG
    Int J Mol Sci; 2018 Dec; 19(12):. PubMed ID: 30513792
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A novel transplantable model of lung cancer-associated tissue loss and disrupted muscle regeneration.
    Arneson-Wissink PC; Ducharme AM; Doles JD
    Skelet Muscle; 2020 Mar; 10(1):6. PubMed ID: 32151276
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Patient-derived bladder cancer xenografts in the preclinical development of novel targeted therapies.
    Jäger W; Xue H; Hayashi T; Janssen C; Awrey S; Wyatt AW; Anderson S; Moskalev I; Haegert A; Alshalalfa M; Erho N; Davicioni E; Fazli L; Li E; Collins C; Wang Y; Black PC
    Oncotarget; 2015 Aug; 6(25):21522-32. PubMed ID: 26041878
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Distinct cachexia profiles in response to human pancreatic tumours in mouse limb and respiratory muscle.
    Nosacka RL; Delitto AE; Delitto D; Patel R; Judge SM; Trevino JG; Judge AR
    J Cachexia Sarcopenia Muscle; 2020 Jun; 11(3):820-837. PubMed ID: 32039571
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Observations on the developmental patterns and the consequences of pancreatic exocrine adenocarcinoma. Findings of 154 autopsies.
    Mao C; Domenico DR; Kim K; Hanson DJ; Howard JM
    Arch Surg; 1995 Feb; 130(2):125-34. PubMed ID: 7848081
    [TBL] [Abstract][Full Text] [Related]  

  • 47. An orthotopic nude mouse model for evaluating pathophysiology and therapy of pancreatic cancer.
    Hotz HG; Reber HA; Hotz B; Yu T; Foitzik T; Buhr HJ; Cortina G; Hines OJ
    Pancreas; 2003 May; 26(4):e89-98. PubMed ID: 12717279
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Characterizing the efficacy of cancer therapeutics in patient-derived xenograft models of metastatic breast cancer.
    Turner TH; Alzubi MA; Sohal SS; Olex AL; Dozmorov MG; Harrell JC
    Breast Cancer Res Treat; 2018 Jul; 170(2):221-234. PubMed ID: 29532339
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A Nod Scid mouse model to study human prostate cancer.
    Bastide C; Bagnis C; Mannoni P; Hassoun J; Bladou F
    Prostate Cancer Prostatic Dis; 2002; 5(4):311-5. PubMed ID: 12627217
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A novel method of generating prostate cancer metastases from orthotopic implants.
    Corey E; Quinn JE; Vessella RL
    Prostate; 2003 Jul; 56(2):110-4. PubMed ID: 12746835
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Pentraxin 3 is an adipose tissue-related serum marker for pancreatic cancer cachexia predicting subsequent muscle mass and visceral fat loss.
    Sato K; Hikita H; Shigekawa M; Kato S; Sasaki Y; Shinkai K; Fukuoka M; Kudo S; Sato Y; Fukumoto K; Shirai K; Myojin Y; Sakane S; Murai K; Yoshioka T; Nishio A; Kodama T; Sakamori R; Tatsumi T; Takehara T
    Cancer Sci; 2022 Dec; 113(12):4311-4326. PubMed ID: 36074525
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Pancreatic cancer-induced cachexia is Jak2-dependent in mice.
    Gilabert M; Calvo E; Airoldi A; Hamidi T; Moutardier V; Turrini O; Iovanna J
    J Cell Physiol; 2014 Oct; 229(10):1437-43. PubMed ID: 24648112
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A Method for the Establishment of Human Lung Adenocarcinoma Patient-Derived Xenografts in Mice.
    Lundy J; Jenkins BJ; Saad MI
    Methods Mol Biol; 2021; 2279():165-173. PubMed ID: 33683693
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Increased myocellular lipid and IGFBP-3 expression in a pre-clinical model of pancreatic cancer-related skeletal muscle wasting.
    Cole CL; Bachman JF; Ye J; Murphy J; Gerber SA; Beck CA; Boyce BF; Muthukrishnan G; Chakkalakal JV; Schwarz EM; Linehan D
    J Cachexia Sarcopenia Muscle; 2021 Jun; 12(3):731-745. PubMed ID: 33960737
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A Humanized Patient-Derived Xenograft Model for Pancreatic Cancer.
    Lundy J
    Methods Mol Biol; 2024; 2806():91-100. PubMed ID: 38676798
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Microarray profiling shows distinct differences between primary tumors and commonly used preclinical models in hepatocellular carcinoma.
    Wang W; Iyer NG; Tay HT; Wu Y; Lim TK; Zheng L; Song IC; Kwoh CK; Huynh H; Tan PO; Chow PK
    BMC Cancer; 2015 Oct; 15():828. PubMed ID: 26520397
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Molecular heterogeneity of non-small cell lung carcinoma patient-derived xenografts closely reflect their primary tumors.
    Wang D; Pham NA; Tong J; Sakashita S; Allo G; Kim L; Yanagawa N; Raghavan V; Wei Y; To C; Trinh QM; Starmans MH; Chan-Seng-Yue MA; Chadwick D; Li L; Zhu CQ; Liu N; Li M; Lee S; Ignatchenko V; Strumpf D; Taylor P; Moghal N; Liu G; Boutros PC; Kislinger T; Pintilie M; Jurisica I; Shepherd FA; McPherson JD; Muthuswamy L; Moran MF; Tsao MS
    Int J Cancer; 2017 Feb; 140(3):662-673. PubMed ID: 27750381
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Patient-derived xenograft models for pancreatic adenocarcinoma demonstrate retention of tumor morphology through incorporation of murine stromal elements.
    Delitto D; Pham K; Vlada AC; Sarosi GA; Thomas RM; Behrns KE; Liu C; Hughes SJ; Wallet SM; Trevino JG
    Am J Pathol; 2015 May; 185(5):1297-303. PubMed ID: 25770474
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Optimal Organ for Patient-derived Xenograft Model in Pancreatic Cancer and Microenvironment that Contributes to Success.
    Eguchi S; Kimura K; Kageyama K; Tani N; Tanaka R; Nishio K; Shinkawa H; Ohira GO; Amano R; Tanaka S; Yamamoto A; Takemura S; Yashiro M; Kubo S
    Anticancer Res; 2022 May; 42(5):2395-2404. PubMed ID: 35489770
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Rituximab Decreases Lymphoproliferative Tumor Formation in Hepatopancreaticobiliary and Gastrointestinal Cancer Patient-Derived Xenografts.
    Leiting JL; Hernandez MC; Yang L; Bergquist JR; Ivanics T; Graham RP; Truty MJ
    Sci Rep; 2019 Apr; 9(1):5901. PubMed ID: 30976061
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.