BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

317 related articles for article (PubMed ID: 28609381)

  • 1. Remote ischemic conditioning preserves cognition and motor coordination in a mouse model of traumatic brain injury.
    Sandweiss AJ; Azim A; Ibraheem K; Largent-Milnes TM; Rhee P; Vanderah TW; Joseph B
    J Trauma Acute Care Surg; 2017 Dec; 83(6):1074-1081. PubMed ID: 28609381
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Continuous remote ischemic conditioning attenuates cognitive and motor deficits from moderate traumatic brain injury.
    Pandit V; Khan M; Zakaria ER; Largent-Milnes TM; Hamidi M; O'Keeffe T; Vanderah TW; Joseph B
    J Trauma Acute Care Surg; 2018 Jul; 85(1):48-53. PubMed ID: 29443855
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Secondary brain injury in trauma patients: the effects of remote ischemic conditioning.
    Joseph B; Pandit V; Zangbar B; Kulvatunyou N; Khalil M; Tang A; O'Keeffe T; Gries L; Vercruysse G; Friese RS; Rhee P
    J Trauma Acute Care Surg; 2015 Apr; 78(4):698-703; discussion 703-5. PubMed ID: 25742251
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Remote Ischemic Conditioning Reduced Acute Lung Injury After Traumatic Brain Injury in the Mouse.
    Saber M; Rice AD; Christie I; Roberts RG; Knox KS; Nakaji P; Rowe RK; Wang T; Lifshitz J
    Shock; 2021 Feb; 55(2):256-267. PubMed ID: 32769821
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteomic analysis identifies plasma correlates of remote ischemic conditioning in the context of experimental traumatic brain injury.
    Saber M; Pathak KV; McGilvrey M; Garcia-Mansfield K; Harrison JL; Rowe RK; Lifshitz J; Pirrotte P
    Sci Rep; 2020 Jul; 10(1):12989. PubMed ID: 32737368
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Survival benefits of remote ischemic conditioning in sepsis.
    Joseph B; Khalil M; Hashmi A; Hecker L; Kulvatunyou N; Tang A; Friese RS; Rhee P
    J Surg Res; 2017 Jun; 213():131-137. PubMed ID: 28601305
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Remote Ischemic Conditioning After Stroke Trial 2: A Phase IIb Randomized Controlled Trial in Hyperacute Stroke.
    England TJ; Hedstrom A; O'Sullivan SE; Woodhouse L; Jackson B; Sprigg N; Bath PM
    J Am Heart Assoc; 2019 Dec; 8(23):e013572. PubMed ID: 31747864
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neuroprotective effect of Da Chuanxiong Formula against cognitive and motor deficits in a rat controlled cortical impact model of traumatic brain injury.
    Liu ZK; Ng CF; Shiu HT; Wong HL; Chin WC; Zhang JF; Lam PK; Poon WS; Lau CB; Leung PC; Ko CH
    J Ethnopharmacol; 2018 May; 217():11-22. PubMed ID: 29425850
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A murine model of mild traumatic brain injury exhibiting cognitive and motor deficits.
    Yang SH; Gustafson J; Gangidine M; Stepien D; Schuster R; Pritts TA; Goodman MD; Remick DG; Lentsch AB
    J Surg Res; 2013 Oct; 184(2):981-8. PubMed ID: 23622728
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Propranolol attenuates cognitive, learning, and memory deficits in a murine model of traumatic brain injury.
    Zeeshan M; Hamidi M; OʼKeeffe T; Bae EH; Hanna K; Friese RS; Kulvatunyou N; Zakaria ER; Gries L; Tang A; Joseph B
    J Trauma Acute Care Surg; 2019 Nov; 87(5):1140-1147. PubMed ID: 31425494
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low-Field Magnetic Stimulation Restores Cognitive and Motor Functions in the Mouse Model of Repeated Traumatic Brain Injury: Role of Cellular Prion Protein.
    Sekar S; Zhang Y; Miranzadeh Mahabadi H; Parvizi A; Taghibiglou C
    J Neurotrauma; 2019 Nov; 36(22):3103-3114. PubMed ID: 31020907
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resolvins AT-D1 and E1 differentially impact functional outcome, post-traumatic sleep, and microglial activation following diffuse brain injury in the mouse.
    Harrison JL; Rowe RK; Ellis TW; Yee NS; O'Hara BF; Adelson PD; Lifshitz J
    Brain Behav Immun; 2015 Jul; 47():131-40. PubMed ID: 25585137
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Remote Ischemic Conditioning Prevents Lung and Liver Injury After Hemorrhagic Shock/Resuscitation: Potential Role of a Humoral Plasma Factor.
    Leung CH; Caldarone CA; Wang F; Venkateswaran S; Ailenberg M; Vadasz B; Wen XY; Rotstein OD
    Ann Surg; 2015 Jun; 261(6):1215-25. PubMed ID: 25185480
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Remote Ischemic Conditioning for Acute Stroke: The RESIST Randomized Clinical Trial.
    Blauenfeldt RA; Hjort N; Valentin JB; Homburg AM; Modrau B; Sandal BF; Gude MF; Hougaard KD; Damgaard D; Poulsen M; Diedrichsen T; Schmitz ML; von Weitzel-Mudersbach P; Christensen AA; Figlewski K; Grove EL; Hreiðarsdóttir MK; Lassesen HM; Wittrock D; Mikkelsen S; Væggemose U; Juelsgaard P; Kirkegaard H; Rostgaard-Knudsen M; Degn N; Vestergaard SB; Damsbo AG; Iversen AB; Mortensen JK; Petersson J; Christensen T; Behrndtz AB; Bøtker HE; Gaist D; Fisher M; Hess DC; Johnsen SP; Simonsen CZ; Andersen G
    JAMA; 2023 Oct; 330(13):1236-1246. PubMed ID: 37787796
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hippocampal neuronal degeneration in the traumatic brain injury mouse: non-trivial effect of scalp incision.
    Ezaki J; Shimada R; Shibuya M; Kibayashi K
    Neurol Res; 2016 Nov; 38(11):994-1002. PubMed ID: 27615406
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RECAST (Remote Ischemic Conditioning After Stroke Trial): A Pilot Randomized Placebo Controlled Phase II Trial in Acute Ischemic Stroke.
    England TJ; Hedstrom A; O'Sullivan S; Donnelly R; Barrett DA; Sarmad S; Sprigg N; Bath PM
    Stroke; 2017 May; 48(5):1412-1415. PubMed ID: 28265014
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Remote Ischemic Conditioning Improves Cognitive Function During Cerebral Vascular Injury Through the Induction of Autophagy.
    Wang H; Zhang Q; Xu Y; Bian H; Si C; Yan Z; Zhu M
    Curr Neurovasc Res; 2017; 14(3):250-257. PubMed ID: 28625130
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Remote Ischemic Post-Conditioning Therapy is Protective in Mouse Model of Traumatic Optic Neuropathy.
    Nadeem M; Kindelin A; Mahady L; Bhatia K; Hoda MN; Ducruet AF; Ahmad S
    Neuromolecular Med; 2021 Sep; 23(3):371-382. PubMed ID: 33185833
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel Rat Model of Weight Drop-Induced Closed Diffuse Traumatic Brain Injury Compatible with Electrophysiological Recordings of Vigilance States.
    Büchele F; Morawska MM; Schreglmann SR; Penner M; Muser M; Baumann CR; Noain D
    J Neurotrauma; 2016 Jul; 33(13):1171-80. PubMed ID: 26414556
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Docosahexaenoic acid (DHA) enhances the therapeutic potential of neonatal neural stem cell transplantation post-Traumatic brain injury.
    Ghazale H; Ramadan N; Mantash S; Zibara K; El-Sitt S; Darwish H; Chamaa F; Boustany RM; Mondello S; Abou-Kheir W; Soueid J; Kobeissy F
    Behav Brain Res; 2018 Mar; 340():1-13. PubMed ID: 29126932
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.