These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

398 related articles for article (PubMed ID: 28609620)

  • 21. Supercooled water drops impacting superhydrophobic textures.
    Maitra T; Antonini C; Tiwari MK; Mularczyk A; Imeri Z; Schoch P; Poulikakos D
    Langmuir; 2014 Sep; 30(36):10855-61. PubMed ID: 25157476
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Passive Anti-Icing Performances of the Same Superhydrophobic Surfaces under Static Freezing, Dynamic Supercooled-Droplet Impinging, and Icing Wind Tunnel Tests.
    Tian Z; Wang L; Zhu D; Chen C; Zhao H; Peng R; Zhang H; Fan P; Zhong M
    ACS Appl Mater Interfaces; 2023 Feb; 15(4):6013-6024. PubMed ID: 36656131
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Predictive model for ice formation on superhydrophobic surfaces.
    Bahadur V; Mishchenko L; Hatton B; Taylor JA; Aizenberg J; Krupenkin T
    Langmuir; 2011 Dec; 27(23):14143-50. PubMed ID: 21899285
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Regulation of Droplet Rebound Behavior with Contact Time Control on a Flexible and Superhydrophobic Film.
    Ding S; Dai Z; Chen G; Lei M; Song Q; Gao Y; Zhou Y; Zhou B
    Langmuir; 2022 Mar; 38(9):2942-2953. PubMed ID: 35200028
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Condensation and freezing of droplets on superhydrophobic surfaces.
    Oberli L; Caruso D; Hall C; Fabretto M; Murphy PJ; Evans D
    Adv Colloid Interface Sci; 2014 Aug; 210():47-57. PubMed ID: 24200089
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Anti-Icing or Deicing: Icephobicities of Superhydrophobic Surfaces with Hierarchical Structures.
    Sarshar MA; Song D; Swarctz C; Lee J; Choi CH
    Langmuir; 2018 Nov; 34(46):13821-13827. PubMed ID: 30360623
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Droplet Impact on Anisotropic Superhydrophobic Surfaces.
    Guo C; Zhao D; Sun Y; Wang M; Liu Y
    Langmuir; 2018 Mar; 34(11):3533-3540. PubMed ID: 29436832
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nanofluid Droplet Impact on Rigid and Elastic Superhydrophobic Surfaces.
    Qian C; Li X; Li Q; Chen X
    ACS Omega; 2024 May; 9(20):22003-22015. PubMed ID: 38799373
    [TBL] [Abstract][Full Text] [Related]  

  • 29. On the role of surface morphology in impacting-freezing dynamics of supercooled droplets.
    Hosseini SR; Moghimi M; Nouri NM
    Sci Rep; 2024 Jun; 14(1):12585. PubMed ID: 38821975
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dynamics of ice nucleation on water repellent surfaces.
    Alizadeh A; Yamada M; Li R; Shang W; Otta S; Zhong S; Ge L; Dhinojwala A; Conway KR; Bahadur V; Vinciquerra AJ; Stephens B; Blohm ML
    Langmuir; 2012 Feb; 28(6):3180-6. PubMed ID: 22235939
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Molecular Dynamics Simulation of Droplet Impact on a Hydrophobic 3D Elastic Surface.
    Li R; Zhu P; Xu Y; Lu H; Rong J
    Langmuir; 2023 Jul; 39(29):10280-10288. PubMed ID: 37450274
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Superhydrophobicity enhancement through substrate flexibility.
    Vasileiou T; Gerber J; Prautzsch J; Schutzius TM; Poulikakos D
    Proc Natl Acad Sci U S A; 2016 Nov; 113(47):13307-13312. PubMed ID: 27834217
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Spontaneous droplet trampolining on rigid superhydrophobic surfaces.
    Schutzius TM; Jung S; Maitra T; Graeber G; Köhme M; Poulikakos D
    Nature; 2015 Nov; 527(7576):82-5. PubMed ID: 26536959
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of wettability on sessile drop freezing: when superhydrophobicity stimulates an extreme freezing delay.
    Boinovich L; Emelyanenko AM; Korolev VV; Pashinin AS
    Langmuir; 2014 Feb; 30(6):1659-68. PubMed ID: 24491217
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of Latent Heat Released by Freezing Droplets during Frost Wave Propagation.
    Chavan S; Park D; Singla N; Sokalski P; Boyina K; Miljkovic N
    Langmuir; 2018 Jun; 34(22):6636-6644. PubMed ID: 29733606
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Droplets Can Rebound toward Both Directions on Textured Surfaces with a Wettability Gradient.
    Zhang B; Lei Q; Wang Z; Zhang X
    Langmuir; 2016 Jan; 32(1):346-51. PubMed ID: 26669260
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Droplet impact on soft viscoelastic surfaces.
    Chen L; Bonaccurso E; Deng P; Zhang H
    Phys Rev E; 2016 Dec; 94(6-1):063117. PubMed ID: 28085484
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Anti-icing potential of superhydrophobic Ti6Al4V surfaces: ice nucleation and growth.
    Shen Y; Tao J; Tao H; Chen S; Pan L; Wang T
    Langmuir; 2015 Oct; 31(39):10799-806. PubMed ID: 26367109
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Droplet evaporation on heated hydrophobic and superhydrophobic surfaces.
    Dash S; Garimella SV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Apr; 89(4):042402. PubMed ID: 24827255
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Numerical study of droplet impact on a flexible substrate.
    Xiong Y; Huang H; Lu XY
    Phys Rev E; 2020 May; 101(5-1):053107. PubMed ID: 32575301
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.