These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 28609626)

  • 1. Water Droplet Spreading and Wicking on Nanostructured Surfaces.
    Chen X; Chen J; Ouyang X; Song Y; Xu R; Jiang P
    Langmuir; 2017 Jul; 33(27):6701-6707. PubMed ID: 28609626
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Water Wicking and Droplet Spreading on Randomly Structured Thin Nanoporous Layers.
    Wemp CK; Carey VP
    Langmuir; 2017 Dec; 33(50):14513-14525. PubMed ID: 29155595
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wicking and spreading of water droplets on nanotubes.
    Ahn HS; Park G; Kim J; Kim MH
    Langmuir; 2012 Feb; 28(5):2614-9. PubMed ID: 22224927
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Droplet spreading on a two-dimensional wicking surface.
    Lai CQ; Mai TT; Zheng H; Lee PS; Leong KC; Lee C; Choi WK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):062406. PubMed ID: 24483460
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of droplet morphology on growth dynamics and heat transfer during condensation on superhydrophobic nanostructured surfaces.
    Miljkovic N; Enright R; Wang EN
    ACS Nano; 2012 Feb; 6(2):1776-85. PubMed ID: 22293016
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Superwicking on Nanoporous Micropillared Surfaces.
    Zheng D; Choi CH; Sun G; Zhao X
    ACS Appl Mater Interfaces; 2020 Jul; 12(27):30925-30931. PubMed ID: 32525647
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Droplet impingement dynamics: effect of surface temperature during boiling and non-boiling conditions.
    Shen J; Liburdy JA; Pence DV; Narayanan V
    J Phys Condens Matter; 2009 Nov; 21(46):464133. PubMed ID: 21715897
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microscopic Observation of Preferential Capillary Pumping in Hollow Nanowire Bundles.
    Chun J; Xu C; Li Q; Chen Y; Zhao Q; Yang W; Wen R; Ma X
    Langmuir; 2022 Jan; 38(1):352-362. PubMed ID: 34812042
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaporation Enhancement of Microscale Droplet Impact on Micro/Nanostructured Surfaces.
    Chen K; Xu RN; Jiang PX
    Langmuir; 2020 Oct; 36(41):12230-12236. PubMed ID: 33035425
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Can Wicking Control Droplet Cooling?
    Auliano M; Auliano D; Fernandino M; Asinari P; Dorao CA
    Langmuir; 2019 May; 35(20):6562-6570. PubMed ID: 31038314
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wicking Enhancement in Three-Dimensional Hierarchical Nanostructures.
    Wang Z; Zhao J; Bagal A; Dandley EC; Oldham CJ; Fang T; Parsons GN; Chang CH
    Langmuir; 2016 Aug; 32(32):8029-33. PubMed ID: 27459627
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dropwise Evaporative Cooling of Heated Surfaces with Various Wettability Characteristics Obtained by Nanostructure Modifications.
    Chen JN; Zhang Z; Ouyang XL; Jiang PX
    Nanoscale Res Lett; 2016 Dec; 11(1):158. PubMed ID: 27003427
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spreading dynamics of microdroplets on nanostructured surfaces.
    Wang X; Yan X; Du J; Ji B; Jalal Inanlu M; Min Q; Miljkovic N
    J Colloid Interface Sci; 2023 Apr; 635():221-230. PubMed ID: 36592502
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extraordinary shifts of the Leidenfrost temperature from multiscale micro/nanostructured surfaces.
    Kruse C; Anderson T; Wilson C; Zuhlke C; Alexander D; Gogos G; Ndao S
    Langmuir; 2013 Aug; 29(31):9798-806. PubMed ID: 23799305
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization Method for Grooved Surface Structures Regarding the Evaporation Heat Transfer of Ultrathin Liquid Films at the Nanoscale.
    Cao Q; Cui Z; Shao W
    Langmuir; 2020 Mar; 36(11):2802-2815. PubMed ID: 32114765
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heat Transfer through a Condensate Droplet on Hydrophobic and Nanostructured Superhydrophobic Surfaces.
    Chavan S; Cha H; Orejon D; Nawaz K; Singla N; Yeung YF; Park D; Kang DH; Chang Y; Takata Y; Miljkovic N
    Langmuir; 2016 Aug; 32(31):7774-87. PubMed ID: 27409353
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Capillary Rise of Nanostructured Microwicks.
    Choi CH; Krishnan S; TeGrotenhuis W; Chang CH
    Micromachines (Basel); 2018 Mar; 9(4):. PubMed ID: 30424087
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mimicking both petal and lotus effects on a single silicon substrate by tuning the wettability of nanostructured surfaces.
    Dawood MK; Zheng H; Liew TH; Leong KC; Foo YL; Rajagopalan R; Khan SA; Choi WK
    Langmuir; 2011 Apr; 27(7):4126-33. PubMed ID: 21355585
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enabling Highly Effective Boiling from Superhydrophobic Surfaces.
    Allred TP; Weibel JA; Garimella SV
    Phys Rev Lett; 2018 Apr; 120(17):174501. PubMed ID: 29756846
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.