These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 28609665)

  • 1. Generation of electron vortex beams using line charges via the electrostatic Aharonov-Bohm effect.
    Pozzi G; Lu PH; Tavabi AH; Duchamp M; Dunin-Borkowski RE
    Ultramicroscopy; 2017 Oct; 181():191-196. PubMed ID: 28609665
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effective beam separation schemes for the measurement of the electric Aharonov-Bohm effect in an ion interferometer.
    Schütz G; Rembold A; Pooch A; Prochel H; Stibor A
    Ultramicroscopy; 2015 Nov; 158():65-73. PubMed ID: 26188995
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Aharonov-Bohm effect and its applications to electron phase microscopy.
    Tonomura A
    Proc Jpn Acad Ser B Phys Biol Sci; 2006 Apr; 82(2):45-58. PubMed ID: 25792772
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acoustic vortex beams in synthetic magnetic fields.
    Rondón I; Leykam D
    J Phys Condens Matter; 2020 Mar; 32(10):104001. PubMed ID: 31711055
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient creation of electron vortex beams for high resolution STEM imaging.
    Béché A; Juchtmans R; Verbeeck J
    Ultramicroscopy; 2017 Jul; 178():12-19. PubMed ID: 27222320
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biprism electron interferometry with a single atom tip source.
    Schütz G; Rembold A; Pooch A; Meier S; Schneeweiss P; Rauschenbeutel A; Günther A; Chang WT; Hwang IS; Stibor A
    Ultramicroscopy; 2014 Jun; 141():9-15. PubMed ID: 24704604
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design of electrostatic phase elements for sorting the orbital angular momentum of electrons.
    Pozzi G; Grillo V; Lu PH; Tavabi AH; Karimi E; Dunin-Borkowski RE
    Ultramicroscopy; 2020 Jan; 208():112861. PubMed ID: 31670053
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterisation of ferromagnetic rings for Zernike phase plates using the Aharonov-Bohm effect.
    Edgcombe CJ; Ionescu A; Loudon JC; Blackburn AM; Kurebayashi H; Barnes CH
    Ultramicroscopy; 2012 Sep; 120():78-85. PubMed ID: 22842114
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vortex degeneracy lifting and Aharonov-Bohm-like interference in deformed photonic graphene.
    Zhang P; Gallardo D; Liu S; Gao Y; Li T; Wang Y; Chen Z; Zhang X
    Opt Lett; 2017 Mar; 42(5):915-918. PubMed ID: 28248330
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Observation of a Biexciton Wigner Molecule by Fractional Optical Aharonov-Bohm Oscillations in a Single Quantum Ring.
    Kim HD; Okuyama R; Kyhm K; Eto M; Taylor RA; Nicolet AL; Potemski M; Nogues G; Dang le S; Je KC; Kim J; Kyhm JH; Yoen KH; Lee EH; Kim JY; Han IK; Choi W; Song J
    Nano Lett; 2016 Jan; 16(1):27-33. PubMed ID: 26648477
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Locality and topology in the molecular Aharonov-Bohm effect.
    Sjöqvist E
    Phys Rev Lett; 2002 Nov; 89(21):210401. PubMed ID: 12443394
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental study of surface waves scattering by a single vortex and a vortex dipole.
    Vivanco F; Melo F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Feb; 69(2 Pt 2):026307. PubMed ID: 14995559
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fresnel and Fraunhofer diffraction of a Gaussian laser beam by fork-shaped gratings.
    Janicijevic L; Topuzoski S
    J Opt Soc Am A Opt Image Sci Vis; 2008 Nov; 25(11):2659-69. PubMed ID: 18978843
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scattering of dislocated wave fronts by vertical vorticity and the Aharonov-Bohm effect. I. Shallow water.
    Coste C; Lund F; Umeki M
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Oct; 60(4 Pt B):4908-16. PubMed ID: 11970356
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phase recovery and lensless imaging by iterative methods in optical, X-ray and electron diffraction.
    Spence JC; Weierstall U; Howells M
    Philos Trans A Math Phys Eng Sci; 2002 May; 360(1794):875-95. PubMed ID: 12804284
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Asymmetry and non-dispersivity in the Aharonov-Bohm effect.
    Becker M; Guzzinati G; Béché A; Verbeeck J; Batelaan H
    Nat Commun; 2019 Apr; 10(1):1700. PubMed ID: 30979879
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonlinear Aharonov-Bohm scattering by optical vortices.
    Neshev D; Nepomnyashchy A; Kivshar YS
    Phys Rev Lett; 2001 Jul; 87(4):043901. PubMed ID: 11461616
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photonic Aharonov-Bohm effect in photon-phonon interactions.
    Li E; Eggleton BJ; Fang K; Fan S
    Nat Commun; 2014; 5():3225. PubMed ID: 24476790
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vortex beam production and contrast enhancement from a magnetic spiral phase plate.
    Blackburn AM; Loudon JC
    Ultramicroscopy; 2014 Jan; 136():127-43. PubMed ID: 24128851
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Excitonic Aharonov-Bohm Oscillations in Core-Shell Nanowires.
    Corfdir P; Marquardt O; Lewis RB; Sinito C; Ramsteiner M; Trampert A; Jahn U; Geelhaar L; Brandt O; Fomin VM
    Adv Mater; 2019 Jan; 31(3):e1805645. PubMed ID: 30461088
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.