These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 28610727)

  • 1. Is caffeic acid, as the major metabolite present in Moscatel wine protein haze hydrolysate, involved in protein haze formation?
    Chagas R; Lourenço AM; Monteiro S; Ferreira RB; Ferreira LM
    Food Res Int; 2017 Aug; 98():103-109. PubMed ID: 28610727
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of new derivatives of 2-S-glutathionylcaftaric acid in aged white wines by HPLC-DAD-ESI-MS(n).
    Cejudo-Bastante MJ; Pérez-Coello MS; Hermosín-Gutiérrez I
    J Agric Food Chem; 2010 Nov; 58(21):11483-92. PubMed ID: 20942401
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sulfate--a candidate for the missing essential factor that is required for the formation of protein haze in white wine.
    Pocock KF; Alexander GM; Hayasaka Y; Jones PR; Waters EJ
    J Agric Food Chem; 2007 Mar; 55(5):1799-807. PubMed ID: 17295506
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wine protein haze: mechanisms of formation and advances in prevention.
    Van Sluyter SC; McRae JM; Falconer RJ; Smith PA; Bacic A; Waters EJ; Marangon M
    J Agric Food Chem; 2015 Apr; 63(16):4020-30. PubMed ID: 25847216
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Roles of grape thaumatin-like protein and chitinase in white wine haze formation.
    Marangon M; Van Sluyter SC; Neilson KA; Chan C; Haynes PA; Waters EJ; Falconer RJ
    J Agric Food Chem; 2011 Jan; 59(2):733-40. PubMed ID: 21189017
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photoproduction of glyoxylic acid in model wine: Impact of sulfur dioxide, caffeic acid, pH and temperature.
    Grant-Preece P; Schmidtke LM; Barril C; Clark AC
    Food Chem; 2017 Jan; 215():292-300. PubMed ID: 27542478
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of Caffeic and Caftaric Acid, Fructose, and Storage Temperature on Furan Derivatives in Base Wine.
    Medeiros J; Xu S; Pickering GJ; Kemp BS
    Molecules; 2022 Nov; 27(22):. PubMed ID: 36431991
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein/polysaccharide interactions and their impact on haze formation in white wines.
    Dufrechou M; Doco T; Poncet-Legrand C; Sauvage FX; Vernhet A
    J Agric Food Chem; 2015 Nov; 63(45):10042-53. PubMed ID: 26477433
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical profiles and aroma contribution of terpene compounds in Meili (Vitis vinifera L.) grape and wine.
    Yang Y; Jin GJ; Wang XJ; Kong CL; Liu J; Tao YS
    Food Chem; 2019 Jun; 284():155-161. PubMed ID: 30744840
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Moscatel vine-shoot extracts as a grapevine biostimulant to enhance wine quality.
    Sánchez-Gómez R; Zalacain A; Pardo F; Alonso GL; Salinas MR
    Food Res Int; 2017 Aug; 98():40-49. PubMed ID: 28610731
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of caffeic acid on the color of red wine.
    Darias-Martín J; Martín-Luis B; Carrillo-López M; Lamuela-Raventós R; Díaz-Romero C; Boulton R
    J Agric Food Chem; 2002 Mar; 50(7):2062-7. PubMed ID: 11902957
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural characterization of reaction products of caftaric acid and bisulfite present in a commercial wine using high resolution mass spectrometric and nuclear magnetic resonance techniques.
    Hayasaka Y; Black CA; Hack J; Smith P
    Food Chem; 2017 Sep; 230():99-107. PubMed ID: 28407977
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular structures of nonvolatile components in the Haihong fruit wine and their free radical scavenging effect.
    Hui Y; Wen S; Lihong W; Chuang W; Chaoyun W
    Food Chem; 2021 Aug; 353():129298. PubMed ID: 33711703
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Caftaric Acid Isolation from Unripe Grape: A "Green" Alternative for Hydroxycinnamic Acids Recovery.
    Vendramin V; Viel A; Vincenzi S
    Molecules; 2021 Feb; 26(4):. PubMed ID: 33669973
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigations on anthocyanins in wines from Vitis vinifera cv. pinotage: factors influencing the formation of pinotin A and its correlation with wine age.
    Schwarz M; Hofmann G; Winterhalter P
    J Agric Food Chem; 2004 Feb; 52(3):498-504. PubMed ID: 14759139
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of high hydrostatic pressure (HHP) on the protein structure and thermal stability of Sauvignon blanc wine.
    Tabilo-Munizaga G; Gordon TA; Villalobos-Carvajal R; Moreno-Osorio L; Salazar FN; Pérez-Won M; Acuña S
    Food Chem; 2014 Jul; 155():214-20. PubMed ID: 24594177
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorescence sensing technology for the rapid detection of haze-forming proteins in white wine.
    Mierczynska-Vasilev A; Vasilev A; Reilly T; Bindon K; Vasilev K
    Food Chem; 2022 Apr; 374():131770. PubMed ID: 34894466
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantification of hydroxycinnamic derivatives in wines by UHPLC-MRM-MS.
    Ferreira-Lima N; Vallverdú-Queralt A; Meudec E; Pinasseau L; Verbaere A; Bordignon-Luiz MT; Le Guernevé C; Cheynier V; Sommerer N
    Anal Bioanal Chem; 2018 Jun; 410(15):3483-3490. PubMed ID: 29256073
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-proline proteins in experimental hazy white wine produced from partially botrytized grapes.
    Perutka Z; Šufeisl M; Strnad M; Šebela M
    Biotechnol Appl Biochem; 2019 May; 66(3):398-411. PubMed ID: 30715757
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Roles of proteins, polysaccharides, and phenolics in haze formation in white wine via reconstitution experiments.
    Gazzola D; Van Sluyter SC; Curioni A; Waters EJ; Marangon M
    J Agric Food Chem; 2012 Oct; 60(42):10666-73. PubMed ID: 22998638
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.