BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

349 related articles for article (PubMed ID: 28610844)

  • 1. Overexpression of eIF4F components in meningiomas and suppression of meningioma cell growth by inhibiting translation initiation.
    Oblinger JL; Burns SS; Huang J; Pan L; Ren Y; Shen R; Kinghorn AD; Welling DB; Chang LS
    Exp Neurol; 2018 Jan; 299(Pt B):299-307. PubMed ID: 28610844
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Components of the eIF4F complex are potential therapeutic targets for malignant peripheral nerve sheath tumors and vestibular schwannomas.
    Oblinger JL; Burns SS; Akhmametyeva EM; Huang J; Pan L; Ren Y; Shen R; Miles-Markley B; Moberly AC; Kinghorn AD; Welling DB; Chang LS
    Neuro Oncol; 2016 Sep; 18(9):1265-77. PubMed ID: 26951381
    [TBL] [Abstract][Full Text] [Related]  

  • 3. eIF4F is a nexus of resistance to anti-BRAF and anti-MEK cancer therapies.
    Boussemart L; Malka-Mahieu H; Girault I; Allard D; Hemmingsson O; Tomasic G; Thomas M; Basmadjian C; Ribeiro N; Thuaud F; Mateus C; Routier E; Kamsu-Kom N; Agoussi S; Eggermont AM; Désaubry L; Robert C; Vagner S
    Nature; 2014 Sep; 513(7516):105-9. PubMed ID: 25079330
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Translation initiation complex eIF4F is a therapeutic target for dual mTOR kinase inhibitors in non-Hodgkin lymphoma.
    Demosthenous C; Han JJ; Stenson MJ; Maurer MJ; Wellik LE; Link B; Hege K; Dogan A; Sotomayor E; Witzig T; Gupta M
    Oncotarget; 2015 Apr; 6(11):9488-501. PubMed ID: 25839159
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Natural compounds as potential treatments of NF2-deficient schwannoma and meningioma: cucurbitacin D and goyazensolide.
    Spear SA; Burns SS; Oblinger JL; Ren Y; Pan L; Kinghorn AD; Welling DB; Chang LS
    Otol Neurotol; 2013 Oct; 34(8):1519-27. PubMed ID: 23928514
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 5'-Cap‒Dependent Translation as a Potent Therapeutic Target for Lethal Human Squamous Cell Carcinoma.
    Srivastava RK; Khan J; Arumugam A; Muzaffar S; Guroji P; Gorbatyuk MS; Elmets CA; Slominski AT; Mukhtar MS; Athar M
    J Invest Dermatol; 2021 Apr; 141(4):742-753.e10. PubMed ID: 32971126
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human eukaryotic initiation factor 4E (eIF4E) and the nucleotide-bound state of eIF4A regulate eIF4F binding to RNA.
    Izidoro MS; Sokabe M; Villa N; Merrick WC; Fraser CS
    J Biol Chem; 2022 Oct; 298(10):102368. PubMed ID: 35963437
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Histone deacetylase inhibitor AR-42 differentially affects cell-cycle transit in meningeal and meningioma cells, potently inhibiting NF2-deficient meningioma growth.
    Burns SS; Akhmametyeva EM; Oblinger JL; Bush ML; Huang J; Senner V; Chen CS; Jacob A; Welling DB; Chang LS
    Cancer Res; 2013 Jan; 73(2):792-803. PubMed ID: 23151902
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Therapeutic suppression of translation initiation modulates chemosensitivity in a mouse lymphoma model.
    Bordeleau ME; Robert F; Gerard B; Lindqvist L; Chen SM; Wendel HG; Brem B; Greger H; Lowe SW; Porco JA; Pelletier J
    J Clin Invest; 2008 Jul; 118(7):2651-60. PubMed ID: 18551192
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two related trypanosomatid eIF4G homologues have functional differences compatible with distinct roles during translation initiation.
    Moura DM; Reis CR; Xavier CC; da Costa Lima TD; Lima RP; Carrington M; de Melo Neto OP
    RNA Biol; 2015; 12(3):305-19. PubMed ID: 25826663
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Manipulation of the host translation initiation complex eIF4F by DNA viruses.
    Walsh D
    Biochem Soc Trans; 2010 Dec; 38(6):1511-6. PubMed ID: 21118117
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Signalling to eIF4E in cancer.
    Siddiqui N; Sonenberg N
    Biochem Soc Trans; 2015 Oct; 43(5):763-72. PubMed ID: 26517881
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptome-wide characterization of the eIF4A signature highlights plasticity in translation regulation.
    Rubio CA; Weisburd B; Holderfield M; Arias C; Fang E; DeRisi JL; Fanidi A
    Genome Biol; 2014; 15(10):476. PubMed ID: 25273840
    [TBL] [Abstract][Full Text] [Related]  

  • 14. eIF4B stimulates translation of long mRNAs with structured 5' UTRs and low closed-loop potential but weak dependence on eIF4G.
    Sen ND; Zhou F; Harris MS; Ingolia NT; Hinnebusch AG
    Proc Natl Acad Sci U S A; 2016 Sep; 113(38):10464-72. PubMed ID: 27601676
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Small-molecule inhibition of the interaction between the translation initiation factors eIF4E and eIF4G.
    Moerke NJ; Aktas H; Chen H; Cantel S; Reibarkh MY; Fahmy A; Gross JD; Degterev A; Yuan J; Chorev M; Halperin JA; Wagner G
    Cell; 2007 Jan; 128(2):257-67. PubMed ID: 17254965
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new translational regulator with homology to eukaryotic translation initiation factor 4G.
    Imataka H; Olsen HS; Sonenberg N
    EMBO J; 1997 Feb; 16(4):817-25. PubMed ID: 9049310
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The domains of yeast eIF4G, eIF4E and the cap fine-tune eIF4A activities through an intricate network of stimulatory and inhibitory effects.
    Krause L; Willing F; Andreou AZ; Klostermeier D
    Nucleic Acids Res; 2022 Jun; 50(11):6497-6510. PubMed ID: 35689631
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RNA-tethering assay and eIF4G:eIF4A obligate dimer design uncovers multiple eIF4F functional complexes.
    Robert F; Cencic R; Cai R; Schmeing TM; Pelletier J
    Nucleic Acids Res; 2020 Sep; 48(15):8562-8575. PubMed ID: 32749456
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Eukaryotic translation initiation factors 4G and 4A from Saccharomyces cerevisiae interact physically and functionally.
    Neff CL; Sachs AB
    Mol Cell Biol; 1999 Aug; 19(8):5557-64. PubMed ID: 10409745
    [TBL] [Abstract][Full Text] [Related]  

  • 20. eIF4F is a thermo-sensing regulatory node in the translational heat shock response.
    Desroches Altamirano C; Kang MK; Jordan MA; Borianne T; Dilmen I; Gnädig M; von Appen A; Honigmann A; Franzmann TM; Alberti S
    Mol Cell; 2024 May; 84(9):1727-1741.e12. PubMed ID: 38547866
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.