These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 28611573)

  • 1. Simultaneous and Continuous Estimation of Shoulder and Elbow Kinematics from Surface EMG Signals.
    Zhang Q; Liu R; Chen W; Xiong C
    Front Neurosci; 2017; 11():280. PubMed ID: 28611573
    [TBL] [Abstract][Full Text] [Related]  

  • 2. EMG-Based Continuous and Simultaneous Estimation of Arm Kinematics in Able-Bodied Individuals and Stroke Survivors.
    Liu J; Kang SH; Xu D; Ren Y; Lee SJ; Zhang LQ
    Front Neurosci; 2017; 11():480. PubMed ID: 28890685
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Continuous and simultaneous estimation of finger kinematics using inputs from an EMG-to-muscle activation model.
    Ngeo JG; Tamei T; Shibata T
    J Neuroeng Rehabil; 2014 Aug; 11():122. PubMed ID: 25123024
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimation of continuous multi-DOF finger joint kinematics from surface EMG using a multi-output Gaussian Process.
    Ngeo J; Tamei T; Shibata T
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3537-40. PubMed ID: 25570754
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Compensation for interaction torques during single- and multijoint limb movement.
    Gribble PL; Ostry DJ
    J Neurophysiol; 1999 Nov; 82(5):2310-26. PubMed ID: 10561408
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Upper Limb Prosthesis Control: A Hybrid EEG-EMG Scheme for Motion Estimation in Transhumeral Subjects.
    Bakshi K; Pramanik R; Manjunatha M; Kumar CS
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():2024-2027. PubMed ID: 30440798
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shoulder muscle activation pattern recognition based on sEMG and machine learning algorithms.
    Jiang Y; Chen C; Zhang X; Chen C; Zhou Y; Ni G; Muh S; Lemos S
    Comput Methods Programs Biomed; 2020 Dec; 197():105721. PubMed ID: 32882593
    [TBL] [Abstract][Full Text] [Related]  

  • 8. EMG-based simultaneous and proportional estimation of wrist/hand kinematics in uni-lateral trans-radial amputees.
    Jiang N; Vest-Nielsen JL; Muceli S; Farina D
    J Neuroeng Rehabil; 2012 Jun; 9():42. PubMed ID: 22742707
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Non-Invasive Analysis of Motor Unit Activation During Simultaneous and Continuous Wrist Movements.
    Chen C; Yu Y; Sheng X; Zhu X
    IEEE J Biomed Health Inform; 2022 May; 26(5):2106-2115. PubMed ID: 34910644
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A linear model for simultaneously and proportionally estimating wrist kinematics from emg during mirrored bilateral movements.
    Pan L; Sheng X; Zhang D; Zhu X
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():4593-6. PubMed ID: 24110757
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control of a myoelectric arm considering cooperated motion of elbow and shoulder joints.
    Kiguchi K; Hayashi Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():1616-9. PubMed ID: 22254632
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimation of distal arm joint angles from EMG and shoulder orientation for transhumeral prostheses.
    Akhtar A; Aghasadeghi N; Hargrove L; Bretl T
    J Electromyogr Kinesiol; 2017 Aug; 35():86-94. PubMed ID: 28624687
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of distal arm joint angles from EMG and shoulder orientation for prosthesis control.
    Akhtar A; Hargrove LJ; Bretl T
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4160-3. PubMed ID: 23366844
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A hybrid BMI-based exoskeleton for paresis: EMG control for assisting arm movements.
    Kawase T; Sakurada T; Koike Y; Kansaku K
    J Neural Eng; 2017 Feb; 14(1):016015. PubMed ID: 28068293
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reconstructing for joint angles on the shoulder and elbow from non-invasive electroencephalographic signals through electromyography.
    Choi K
    Front Neurosci; 2013; 7():190. PubMed ID: 24167469
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional reaching tasks: effect of reaching height and width on upper limb kinematics and muscle activity.
    Vandenberghe A; Levin O; De Schutter J; Swinnen S; Jonkers I
    Gait Posture; 2010 Oct; 32(4):500-7. PubMed ID: 20729085
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inverse Kinematics for Upper Limb Compound Movement Estimation in Exoskeleton-Assisted Rehabilitation.
    Cortés C; de Los Reyes-Guzmán A; Scorza D; Bertelsen Á; Carrasco E; Gil-Agudo Á; Ruiz-Salguero O; Flórez J
    Biomed Res Int; 2016; 2016():2581924. PubMed ID: 27403420
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relationship between stretch reflex thresholds and voluntary arm muscle activation in patients with spasticity.
    Musampa NK; Mathieu PA; Levin MF
    Exp Brain Res; 2007 Aug; 181(4):579-93. PubMed ID: 17476486
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coordination of multi-joint arm movements in cerebellar ataxia: analysis of hand and angular kinematics.
    Topka H; Konczak J; Dichgans J
    Exp Brain Res; 1998 Apr; 119(4):483-92. PubMed ID: 9588783
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Elbow joint angle and elbow movement velocity estimation using NARX-multiple layer perceptron neural network model with surface EMG time domain parameters.
    Raj R; Sivanandan KS
    J Back Musculoskelet Rehabil; 2017; 30(3):515-525. PubMed ID: 27858692
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.