BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 2861202)

  • 1. Branch point control by the phosphorylation state of isocitrate dehydrogenase. A quantitative examination of fluxes during a regulatory transition.
    Walsh K; Koshland DE
    J Biol Chem; 1985 Jul; 260(14):8430-7. PubMed ID: 2861202
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Compensatory regulation in metabolic pathways--responses to increases and decreases in citrate synthase levels.
    Walsh K; Schena M; Flint AJ; Koshland DE
    Biochem Soc Symp; 1987; 54():183-95. PubMed ID: 3332995
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The branch point effect. Ultrasensitivity and subsensitivity to metabolic control.
    LaPorte DC; Walsh K; Koshland DE
    J Biol Chem; 1984 Nov; 259(22):14068-75. PubMed ID: 6389540
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced citric acid biosynthesis in Pseudomonas fluorescens ATCC 13525 by overexpression of the Escherichia coli citrate synthase gene.
    Buch AD; Archana G; Kumar GN
    Microbiology (Reading); 2009 Aug; 155(Pt 8):2620-2629. PubMed ID: 19443543
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of Escherichia coli anaplerotic metabolism and its regulation mechanisms from the metabolic responses to altered dilution rates and phosphoenolpyruvate carboxykinase knockout.
    Yang C; Hua Q; Baba T; Mori H; Shimizu K
    Biotechnol Bioeng; 2003 Oct; 84(2):129-44. PubMed ID: 12966569
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catabolite regulation analysis of Escherichia coli for acetate overflow mechanism and co-consumption of multiple sugars based on systems biology approach using computer simulation.
    Matsuoka Y; Shimizu K
    J Biotechnol; 2013 Oct; 168(2):155-73. PubMed ID: 23850830
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gluconeogenic precursor availability regulates flux through the glyoxylate shunt in
    Crousilles A; Dolan SK; Brear P; Chirgadze DY; Welch M
    J Biol Chem; 2018 Sep; 293(37):14260-14269. PubMed ID: 30030382
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of acetate metabolism by protein phosphorylation in enteric bacteria.
    Cozzone AJ
    Annu Rev Microbiol; 1998; 52():127-64. PubMed ID: 9891796
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pyruvate metabolism and the phosphorylation state of isocitrate dehydrogenase in Escherichia coli.
    el-Mansi EM; Nimmo HG; Holms WH
    J Gen Microbiol; 1986 Mar; 132(3):797-806. PubMed ID: 3525743
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Control of the tricarboxylate cycle and its interactions with glycolysis during acetate utilization in rat heart.
    Randle PJ; England PJ; Denton RM
    Biochem J; 1970 May; 117(4):677-95. PubMed ID: 5449122
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contrasting effects of isocitrate dehydrogenase deletion on fluxes through enzymes of central metabolism in Escherichia coli.
    El-Mansi M
    FEMS Microbiol Lett; 2019 Aug; 366(15):. PubMed ID: 31504493
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acetate scavenging activity in Escherichia coli: interplay of acetyl-CoA synthetase and the PEP-glyoxylate cycle in chemostat cultures.
    Renilla S; Bernal V; Fuhrer T; Castaño-Cerezo S; Pastor JM; Iborra JL; Sauer U; Cánovas M
    Appl Microbiol Biotechnol; 2012 Mar; 93(5):2109-24. PubMed ID: 21881893
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The isocitrate dehydrogenase phosphorylation cycle. Identification of the primary rate-limiting step.
    Stueland CS; Gorden K; LaPorte DC
    J Biol Chem; 1988 Dec; 263(36):19475-9. PubMed ID: 3058700
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Enzyme activity of citrate, glyoxylate and pentosephosphate cycles during synthesis of citric acids by Candida lipolytica].
    Glazunova LM; Finogenova TV
    Mikrobiologiia; 1976; 45():444-9. PubMed ID: 1004246
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Steady-state modelling of metabolic flux between the tricarboxylic acid cycle and the glyoxylate bypass in Escherichia coli.
    el-Mansi EM; Dawson GC; Bryce CF
    Comput Appl Biosci; 1994 Jun; 10(3):295-9. PubMed ID: 7922686
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The central metabolic pathways of Escherichia coli: relationship between flux and control at a branch point, efficiency of conversion to biomass, and excretion of acetate.
    Holms WH
    Curr Top Cell Regul; 1986; 28():69-105. PubMed ID: 3098503
    [No Abstract]   [Full Text] [Related]  

  • 17. Regulation of isocitrate dehydrogenase activity in Escherichia coli on adaptation to acetate.
    Holms WH; Bennett PM
    J Gen Microbiol; 1971 Jan; 65(1):57-68. PubMed ID: 4932752
    [No Abstract]   [Full Text] [Related]  

  • 18. Control of carbon flux through enzymes of central and intermediary metabolism during growth of Escherichia coli on acetate.
    El-Mansi M; Cozzone AJ; Shiloach J; Eikmanns BJ
    Curr Opin Microbiol; 2006 Apr; 9(2):173-9. PubMed ID: 16530464
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of the enzymes at the branchpoint between the citric acid cycle and the glyoxylate bypass in Escherichia coli.
    Nimmo HG; Borthwick AC; el-Mansi EM; Holms WH; MacKintosh C; Nimmo GA
    Biochem Soc Symp; 1987; 54():93-101. PubMed ID: 3333001
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Regulation of the glyoxylic cycle: effect of the NADPH/NADP ratio].
    Machado A
    Rev Esp Fisiol; 1982; 38 Suppl():141-6. PubMed ID: 7146569
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.