BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 2861202)

  • 21. Compensatory phosphorylation of isocitrate dehydrogenase. A mechanism for adaptation to the intracellular environment.
    LaPorte DC; Thorsness PE; Koshland DE
    J Biol Chem; 1985 Sep; 260(19):10563-8. PubMed ID: 3897222
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Understanding the impact of the cofactor swapping of isocitrate dehydrogenase over the growth phenotype of Escherichia coli on acetate by using constraint-based modeling.
    Armingol E; Tobar E; Cabrera R
    PLoS One; 2018; 13(4):e0196182. PubMed ID: 29677222
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Interaction of enzymes of the tricarboxylic acid cycle in Bacillus subtilis and Escherichia coli: a comparative study.
    Jung T; Mack M
    FEMS Microbiol Lett; 2018 Apr; 365(8):. PubMed ID: 29546354
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Isocitrate dehydrogenase and glyoxylate cycle enzyme activities in Bradyrhizobium japonicum under various growth conditions.
    Green LS; Karr DB; Emerich DW
    Arch Microbiol; 1998 May; 169(5):445-51. PubMed ID: 9560426
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Quantitative determination of metabolic fluxes during coutilization of two carbon sources: comparative analyses with Corynebacterium glutamicum during growth on acetate and/or glucose.
    Wendisch VF; de Graaf AA; Sahm H; Eikmanns BJ
    J Bacteriol; 2000 Jun; 182(11):3088-96. PubMed ID: 10809686
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [The mechanism of acetate assimilation in purple nonsulfur bacteria lacking the glyoxylate pathway: enzymes of the citramalate cycle in Rhodobacter sphaeroides].
    Filatova LV; Berg IA; Krasil'nikova EN; Ivanovskiĭ RN
    Mikrobiologiia; 2005; 74(3):319-28. PubMed ID: 16119844
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Regulation of isocitrate dehydrogenase by phosphorylation in Escherichia coli K-12 and a simple method for determining the amount of inactive phosphoenzyme.
    Edlin JD; Sundaram TK
    J Bacteriol; 1989 May; 171(5):2634-8. PubMed ID: 2651411
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The regulatory properties of isocitrate dehydrogenase kinase and isocitrate dehydrogenase phosphatase from Escherichia coli ML308 and the roles of these activities in the control of isocitrate dehydrogenase.
    Nimmo GA; Nimmo HG
    Eur J Biochem; 1984 Jun; 141(2):409-14. PubMed ID: 6329757
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phosphorylation of isocitrate dehydrogenase in Escherichia coli mutants with a non-functional glyoxylate cycle.
    Reeves HC; Malloy PJ
    FEBS Lett; 1983 Jul; 158(2):239-42. PubMed ID: 6347712
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Global metabolic response of Escherichia coli to gnd or zwf gene-knockout, based on 13C-labeling experiments and the measurement of enzyme activities.
    Zhao J; Baba T; Mori H; Shimizu K
    Appl Microbiol Biotechnol; 2004 Mar; 64(1):91-8. PubMed ID: 14661115
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Control of isocitrate dehydrogenase catalytic activity by protein phosphorylation in Escherichia coli.
    Cozzone AJ; El-Mansi M
    J Mol Microbiol Biotechnol; 2005; 9(3-4):132-46. PubMed ID: 16415587
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quantification of carbon fluxes through the tricarboxylic acid cycle in early germinating lettuce embryos.
    Salon C; Raymond P; Pradet A
    J Biol Chem; 1988 Sep; 263(25):12278-87. PubMed ID: 3137224
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Determination of flux through the branch point of two metabolic cycles. The tricarboxylic acid cycle and the glyoxylate shunt.
    Walsh K; Koshland DE
    J Biol Chem; 1984 Aug; 259(15):9646-54. PubMed ID: 6378912
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Engineering of Escherichia coli for Krebs cycle-dependent production of malic acid.
    Trichez D; Auriol C; Baylac A; Irague R; Dressaire C; Carnicer-Heras M; Heux S; François JM; Walther T
    Microb Cell Fact; 2018 Jul; 17(1):113. PubMed ID: 30012131
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Citric acid cycle enzymes and nitrogenase in nodules of Pisum sativum.
    Kurz WG; LaRUE TA
    Can J Microbiol; 1977 Sep; 23(9):1197-200. PubMed ID: 907916
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Engineered citrate synthase alters Acetate Accumulation in Escherichia coli.
    Tovilla-Coutiño DB; Momany C; Eiteman MA
    Metab Eng; 2020 Sep; 61():171-180. PubMed ID: 32569710
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enzymes of the tricarboxylic acid cycle in Ancylostoma ceylanicum and Nippostrongylus brasiliensis.
    Singh SP; Katiyar JC; Srivastava VM
    J Parasitol; 1992 Feb; 78(1):24-9. PubMed ID: 1738065
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biochemical Validation of the Glyoxylate Cycle in the Cyanobacterium Chlorogloeopsis fritschii Strain PCC 9212.
    Zhang S; Bryant DA
    J Biol Chem; 2015 May; 290(22):14019-30. PubMed ID: 25869135
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The regulation of NADP-linked isocitrate dehydrogenase in Aspergillus nidulans.
    Kelly JM; Hynes MJ
    J Gen Microbiol; 1982 Jan; 128(1):23-8. PubMed ID: 6123545
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reversible inactivation of the isocitrate dehydrogenase of Escherichia coli ML308 during growth on acetate.
    Bennett PM; Holms WH
    J Gen Microbiol; 1975 Mar; 87(1):37-51. PubMed ID: 1094097
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.