BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 28612283)

  • 1. Cell-laden microgel prepared using a biocompatible aqueous two-phase strategy.
    Liu Y; Nambu NO; Taya M
    Biomed Microdevices; 2017 Sep; 19(3):55. PubMed ID: 28612283
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enzymatic Crosslinking of Polymer Conjugates is Superior over Ionic or UV Crosslinking for the On-Chip Production of Cell-Laden Microgels.
    Henke S; Leijten J; Kemna E; Neubauer M; Fery A; van den Berg A; van Apeldoorn A; Karperien M
    Macromol Biosci; 2016 Oct; 16(10):1524-1532. PubMed ID: 27440382
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidic fabrication of polyethylene glycol microgel capsules with tailored properties for the delivery of biomolecules.
    Guerzoni LPB; Bohl J; Jans A; Rose JC; Koehler J; Kuehne AJC; De Laporte L
    Biomater Sci; 2017 Jul; 5(8):1549-1557. PubMed ID: 28604857
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancing the biocompatibility of microfluidics-assisted fabrication of cell-laden microgels with channel geometry.
    Kim S; Oh J; Cha C
    Colloids Surf B Biointerfaces; 2016 Nov; 147():1-8. PubMed ID: 27478957
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Microfluidic System for One-Chip Harvesting of Single-Cell-Laden Hydrogels in Culture Medium.
    Nan L; Yang Z; Lyu H; Lau KYY; Shum HC
    Adv Biosyst; 2019 Nov; 3(11):e1900076. PubMed ID: 32648695
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Microfluidic Strategy for Controllable Generation of Water-in-Water Droplets as Biocompatible Microcarriers.
    Liu HT; Wang H; Wei WB; Liu H; Jiang L; Qin JH
    Small; 2018 Sep; 14(36):e1801095. PubMed ID: 30091845
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidic diamagnetic water-in-water droplets: a biocompatible cell encapsulation and manipulation platform.
    Navi M; Abbasi N; Jeyhani M; Gnyawali V; Tsai SSH
    Lab Chip; 2018 Nov; 18(22):3361-3370. PubMed ID: 30375625
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidic Production of Alginate Hydrogel Particles for Antibody Encapsulation and Release.
    Mazutis L; Vasiliauskas R; Weitz DA
    Macromol Biosci; 2015 Dec; 15(12):1641-6. PubMed ID: 26198619
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Droplet-Based Microfluidic Templating of Polyglycerol-Based Microgels for the Encapsulation of Cells: A Comparative Study.
    Kapourani E; Neumann F; Achazi K; Dernedde J; Haag R
    Macromol Biosci; 2018 Oct; 18(10):e1800116. PubMed ID: 29992778
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Supramolecular hydrogel capsules based on PEG: a step toward degradable biomaterials with rational design.
    Rossow T; Bayer S; Albrecht R; Tzschucke CC; Seiffert S
    Macromol Rapid Commun; 2013 Sep; 34(17):1401-7. PubMed ID: 23929582
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation of monodisperse calcium alginate microbeads by rupture of water-in-oil-in-water droplets with an ultra-thin oil phase layer.
    Saeki D; Sugiura S; Kanamori T; Sato S; Ichikawa S
    Lab Chip; 2010 Sep; 10(17):2292-5. PubMed ID: 20625583
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controllable generation and encapsulation of alginate fibers using droplet-based microfluidics.
    Martino C; Statzer C; Vigolo D; deMello AJ
    Lab Chip; 2016 Jan; 16(1):59-64. PubMed ID: 26556398
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidic Generation of Particle-Stabilized Water-in-Water Emulsions.
    Abbasi N; Navi M; Tsai SSH
    Langmuir; 2018 Jan; 34(1):213-218. PubMed ID: 29231744
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flow of microgel capsules through topographically patterned microchannels.
    Fiddes LK; Young EW; Kumacheva E; Wheeler AR
    Lab Chip; 2007 Jul; 7(7):863-7. PubMed ID: 17594005
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microfluidic Generation of Monodisperse, Structurally Homogeneous Alginate Microgels for Cell Encapsulation and 3D Cell Culture.
    Utech S; Prodanovic R; Mao AS; Ostafe R; Mooney DJ; Weitz DA
    Adv Healthc Mater; 2015 Aug; 4(11):1628-33. PubMed ID: 26039892
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An integrated microfluidic flow-focusing platform for on-chip fabrication and filtration of cell-laden microgels.
    Mohamed MGA; Kheiri S; Islam S; Kumar H; Yang A; Kim K
    Lab Chip; 2019 Apr; 19(9):1621-1632. PubMed ID: 30896015
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microneedle-assisted microfluidic flow focusing for versatile and high throughput water-in-water droplet generation.
    Jeyhani M; Gnyawali V; Abbasi N; Hwang DK; Tsai SSH
    J Colloid Interface Sci; 2019 Oct; 553():382-389. PubMed ID: 31226629
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro degradation and drug-release properties of water-soluble chitosan cross-linked oxidized sodium alginate core-shell microgels.
    Chen C; Liu M; Lii S; Gao C; Chen J
    J Biomater Sci Polym Ed; 2012; 23(16):2007-24. PubMed ID: 21967992
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Versatile, cell and chip friendly method to gel alginate in microfluidic devices.
    Håti AG; Bassett DC; Ribe JM; Sikorski P; Weitz DA; Stokke BT
    Lab Chip; 2016 Oct; 16(19):3718-27. PubMed ID: 27546333
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Propagation of human iPS cells in alginate-based microcapsules prepared using reactions catalyzed by horseradish peroxidase and catalase.
    Ashida T; Sakai S; Taya M
    Artif Cells Nanomed Biotechnol; 2016 Sep; 44(6):1406-9. PubMed ID: 26148179
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.