These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
238 related articles for article (PubMed ID: 28612464)
1. Recent Advances in Bismuth-Based Nanomaterials for Photoelectrochemical Water Splitting. Bhat SSM; Jang HW ChemSusChem; 2017 Aug; 10(15):3001-3018. PubMed ID: 28612464 [TBL] [Abstract][Full Text] [Related]
2. Efficient water-splitting device based on a bismuth vanadate photoanode and thin-film silicon solar cells. Han L; Abdi FF; van de Krol R; Liu R; Huang Z; Lewerenz HJ; Dam B; Zeman M; Smets AH ChemSusChem; 2014 Oct; 7(10):2832-8. PubMed ID: 25138735 [TBL] [Abstract][Full Text] [Related]
3. Synthesis of nanovoid Bi(2)WO(6) 2D ordered arrays as photoanodes for photoelectrochemical water splitting. Zhang L; Bahnemann D ChemSusChem; 2013 Feb; 6(2):283-90. PubMed ID: 23325719 [TBL] [Abstract][Full Text] [Related]
4. Design of medium band gap Ag-Bi-Nb-O and Ag-Bi-Ta-O semiconductors for driving direct water splitting with visible light. Wang L; Cao B; Kang W; Hybertsen M; Maeda K; Domen K; Khalifah PG Inorg Chem; 2013 Aug; 52(16):9192-205. PubMed ID: 23901790 [TBL] [Abstract][Full Text] [Related]
5. Nanoscale imaging of charge carrier transport in water splitting photoanodes. Eichhorn J; Kastl C; Cooper JK; Ziegler D; Schwartzberg AM; Sharp ID; Toma FM Nat Commun; 2018 Jul; 9(1):2597. PubMed ID: 30013111 [TBL] [Abstract][Full Text] [Related]
6. Efficient solar-driven water splitting by nanocone BiVO4-perovskite tandem cells. Qiu Y; Liu W; Chen W; Chen W; Zhou G; Hsu PC; Zhang R; Liang Z; Fan S; Zhang Y; Cui Y Sci Adv; 2016 Jun; 2(6):e1501764. PubMed ID: 27386565 [TBL] [Abstract][Full Text] [Related]
7. Bismuth Vanadate Photoelectrodes with High Photovoltage as Photoanode and Photocathode in Photoelectrochemical Cells for Water Splitting. Dos Santos WS; Rodriguez M; Khoury JMO; Nascimento LA; Ribeiro RJP; Mesquita JP; Silva AC; Nogueira FGE; Pereira MC ChemSusChem; 2018 Feb; 11(3):589-597. PubMed ID: 29193761 [TBL] [Abstract][Full Text] [Related]
8. Solar Water Splitting Utilizing a SiC Photocathode, a BiVO Iwase A; Kudo A; Numata Y; Ikegami M; Miyasaka T; Ichikawa N; Kato M; Hashimoto H; Inoue H; Ishitani O; Tamiaki H ChemSusChem; 2017 Nov; 10(22):4420-4423. PubMed ID: 28960942 [TBL] [Abstract][Full Text] [Related]
9. Photocatalytic Water Splitting-The Untamed Dream: A Review of Recent Advances. Jafari T; Moharreri E; Amin AS; Miao R; Song W; Suib SL Molecules; 2016 Jul; 21(7):. PubMed ID: 27409596 [TBL] [Abstract][Full Text] [Related]
10. Self-biasing photoelectrochemical cell for spontaneous overall water splitting under visible-light illumination. Chen Q; Li J; Li X; Huang K; Zhou B; Shangguan W ChemSusChem; 2013 Jul; 6(7):1276-81. PubMed ID: 23775929 [TBL] [Abstract][Full Text] [Related]
11. Modeling, simulation, and fabrication of a fully integrated, acid-stable, scalable solar-driven water-splitting system. Walczak K; Chen Y; Karp C; Beeman JW; Shaner M; Spurgeon J; Sharp ID; Amashukeli X; West W; Jin J; Lewis NS; Xiang C ChemSusChem; 2015 Feb; 8(3):544-51. PubMed ID: 25581231 [TBL] [Abstract][Full Text] [Related]
12. Dual Modification of a BiVO Gao L; Li F; Hu H; Long X; Xu N; Hu Y; Wei S; Wang C; Ma J; Jin J ChemSusChem; 2018 Aug; 11(15):2502-2509. PubMed ID: 29863749 [TBL] [Abstract][Full Text] [Related]
13. Assembling of Bi atoms on TiO Pang Y; Zang W; Kou Z; Zhang L; Xu G; Lv J; Gao X; Pan Z; Wang J; Wu Y Nanoscale; 2020 Feb; 12(7):4302-4308. PubMed ID: 32025688 [TBL] [Abstract][Full Text] [Related]
14. Immobilization of a Molecular Ruthenium Catalyst on Hematite Nanorod Arrays for Water Oxidation with Stable Photocurrent. Fan K; Li F; Wang L; Daniel Q; Chen H; Gabrielsson E; Sun J; Sun L ChemSusChem; 2015 Oct; 8(19):3242-7. PubMed ID: 26315677 [TBL] [Abstract][Full Text] [Related]
15. Band structure engineering of TiO2 nanowires by n-p codoping for enhanced visible-light photoelectrochemical water-splitting. Zhang D; Yang M Phys Chem Chem Phys; 2013 Nov; 15(42):18523-9. PubMed ID: 24072357 [TBL] [Abstract][Full Text] [Related]
16. Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode. Abdi FF; Han L; Smets AH; Zeman M; Dam B; van de Krol R Nat Commun; 2013; 4():2195. PubMed ID: 23893238 [TBL] [Abstract][Full Text] [Related]
17. Towards highly efficient photoanodes: boosting sunlight-driven semiconductor nanomaterials for water oxidation. Gan J; Lu X; Tong Y Nanoscale; 2014 Jul; 6(13):7142-64. PubMed ID: 24896687 [TBL] [Abstract][Full Text] [Related]
18. High-Throughput Strategies for the Design, Discovery, and Analysis of Bismuth-Based Photocatalysts. Prabhakar Vattikuti SV; Zeng J; Ramaraghavulu R; Shim J; Mauger A; Julien CM Int J Mol Sci; 2022 Dec; 24(1):. PubMed ID: 36614112 [TBL] [Abstract][Full Text] [Related]
19. Intervening Bismuth Tungstate with DNA Chain Assemblies: A Perception toward Feedstock Conversion via Photoelectrocatalytic Water Splitting. Kumaravel S; Kumar MP; Thiruvengetam P; Bandla N; Sankar SS; Ravichandran S; Kundu S Inorg Chem; 2020 Oct; 59(19):14501-14512. PubMed ID: 32924460 [TBL] [Abstract][Full Text] [Related]
20. Atomic Layer Deposition of Bismuth Vanadates for Solar Energy Materials. Stefik M ChemSusChem; 2016 Jul; 9(13):1727-35. PubMed ID: 27246652 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]