These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
193 related articles for article (PubMed ID: 28613178)
1. Biomechanical Reactions of Exoskeleton Neurorehabilitation Robots in Spastic Elbows and Wrists. Nam HS; Koh S; Kim YJ; Beom J; Lee WH; Lee SU; Kim S IEEE Trans Neural Syst Rehabil Eng; 2017 Nov; 25(11):2196-2203. PubMed ID: 28613178 [TBL] [Abstract][Full Text] [Related]
2. Design of a clinically relevant upper-limb exoskeleton robot for stroke patients with spasticity. Lee DJ; Bae SJ; Jang SH; Chang PH IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():622-627. PubMed ID: 28813889 [TBL] [Abstract][Full Text] [Related]
3. KAPS (kinematic assessment of passive stretch): a tool to assess elbow flexor and extensor spasticity after stroke using a robotic exoskeleton. Centen A; Lowrey CR; Scott SH; Yeh TT; Mochizuki G J Neuroeng Rehabil; 2017 Jun; 14(1):59. PubMed ID: 28629415 [TBL] [Abstract][Full Text] [Related]
4. A comparison between electromyography-driven robot and passive motion device on wrist rehabilitation for chronic stroke. Hu XL; Tong KY; Song R; Zheng XJ; Leung WW Neurorehabil Neural Repair; 2009 Oct; 23(8):837-46. PubMed ID: 19531605 [TBL] [Abstract][Full Text] [Related]
5. Development of a powered variable-stiffness exoskeleton device for elbow rehabilitation. Liu Y; Guo S; Hirata H; Ishihara H; Tamiya T Biomed Microdevices; 2018 Aug; 20(3):64. PubMed ID: 30074095 [TBL] [Abstract][Full Text] [Related]
6. Electromyographic analysis of upper limb muscles during standardized isotonic and isokinetic robotic exercise of spastic elbow in patients with stroke. Sin M; Kim WS; Park D; Min YS; Kim WJ; Cho K; Paik NJ J Electromyogr Kinesiol; 2014 Feb; 24(1):11-7. PubMed ID: 24290983 [TBL] [Abstract][Full Text] [Related]
7. Normalization factor for the assessment of elbow spasticity with passive stretch measurement: maximum torque VS. body weight. Wang L; Guo X; Samuel OW; Huang P; Wang H; Li G Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():388-391. PubMed ID: 30440416 [TBL] [Abstract][Full Text] [Related]
8. Robotic Exoskeleton for Wrist and Fingers Joint in Post-Stroke Neuro-Rehabilitation for Low-Resource Settings. Singh N; Saini M; Anand S; Kumar N; Srivastava MVP; Mehndiratta A IEEE Trans Neural Syst Rehabil Eng; 2019 Dec; 27(12):2369-2377. PubMed ID: 31545737 [TBL] [Abstract][Full Text] [Related]
9. Joint-angle-dependent neuromuscular dysfunctions at the wrist in persons after stroke. Hu X; Tong K; Tsang VS; Song R Arch Phys Med Rehabil; 2006 May; 87(5):671-9. PubMed ID: 16635630 [TBL] [Abstract][Full Text] [Related]
10. Characterization and wearability evaluation of a fully portable wrist exoskeleton for unsupervised training after stroke. Lambelet C; Temiraliuly D; Siegenthaler M; Wirth M; Woolley DG; Lambercy O; Gassert R; Wenderoth N J Neuroeng Rehabil; 2020 Oct; 17(1):132. PubMed ID: 33028354 [TBL] [Abstract][Full Text] [Related]
11. Phase-II Clinical Validation of a Powered Exoskeleton for the Treatment of Elbow Spasticity. Crea S; Cempini M; Mazzoleni S; Carrozza MC; Posteraro F; Vitiello N Front Neurosci; 2017; 11():261. PubMed ID: 28553200 [No Abstract] [Full Text] [Related]
12. Effects of neurorehabilitation with and without dry needling technique on muscle thickness, reflex torque, spasticity and functional performance in chronic ischemic stroke patients with spastic upper extremity muscles: a blinded randomized sham-controlled clinical trial. Panahi F; Ebrahimi S; Rojhani-Shirazi Z; Shakibafard A; Hemmati L Disabil Rehabil; 2024 Mar; 46(6):1092-1102. PubMed ID: 36970837 [TBL] [Abstract][Full Text] [Related]
13. Series elastic actuation of an elbow rehabilitation exoskeleton with axis misalignment adaptation. Wu KY; Su YY; Yu YL; Lin KY; Lan CC IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():567-572. PubMed ID: 28813880 [TBL] [Abstract][Full Text] [Related]
14. Analysis of Machine Learning-Based Assessment for Elbow Spasticity Using Inertial Sensors. Kim JY; Park G; Lee SA; Nam Y Sensors (Basel); 2020 Mar; 20(6):. PubMed ID: 32183281 [TBL] [Abstract][Full Text] [Related]
15. The "Beam-Me-In Strategy" - remote haptic therapist-patient interaction with two exoskeletons for stroke therapy. Baur K; Rohrbach N; Hermsdörfer J; Riener R; Klamroth-Marganska V J Neuroeng Rehabil; 2019 Jul; 16(1):85. PubMed ID: 31296226 [TBL] [Abstract][Full Text] [Related]
16. Development of elbow spasticity model for objective training of spasticity assessment of patients post stroke. Park JH; Lee KJ; Yoon YS; Son EJ; Oh JS; Kang SH; Kim H; Park HS IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():146-151. PubMed ID: 28813809 [TBL] [Abstract][Full Text] [Related]
17. On the stiffness analysis of a cable driven leg exoskeleton. Sanjeevi NSS; Vashista V IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():455-460. PubMed ID: 28813862 [TBL] [Abstract][Full Text] [Related]
18. A hybrid BMI-based exoskeleton for paresis: EMG control for assisting arm movements. Kawase T; Sakurada T; Koike Y; Kansaku K J Neural Eng; 2017 Feb; 14(1):016015. PubMed ID: 28068293 [TBL] [Abstract][Full Text] [Related]
19. Reliability of biomechanical spasticity measurements at the elbow of people poststroke. Starsky AJ; Sangani SG; McGuire JR; Logan B; Schmit BD Arch Phys Med Rehabil; 2005 Aug; 86(8):1648-54. PubMed ID: 16084821 [TBL] [Abstract][Full Text] [Related]
20. The construct validity of a spasticity measurement device for clinical practice: an alternative to the Ashworth scales. Pandyan AD; Van Wijck FM; Stark S; Vuadens P; Johnson GR; Barnes MP Disabil Rehabil; 2006 May; 28(9):579-85. PubMed ID: 16690587 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]