BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 28613306)

  • 1. Size-tunable microvortex capture of rare cells.
    Khojah R; Stoutamore R; Di Carlo D
    Lab Chip; 2017 Jul; 17(15):2542-2549. PubMed ID: 28613306
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective particle and cell capture in a continuous flow using micro-vortex acoustic streaming.
    Collins DJ; Khoo BL; Ma Z; Winkler A; Weser R; Schmidt H; Han J; Ai Y
    Lab Chip; 2017 May; 17(10):1769-1777. PubMed ID: 28394386
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Size-selective collection of circulating tumor cells using Vortex technology.
    Sollier E; Go DE; Che J; Gossett DR; O'Byrne S; Weaver WM; Kummer N; Rettig M; Goldman J; Nickols N; McCloskey S; Kulkarni RP; Di Carlo D
    Lab Chip; 2014 Jan; 14(1):63-77. PubMed ID: 24061411
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A weak shear stress microfluidic device based on Viscoelastic Stagnant Region (VSR) for biosensitive particle capture.
    Lu Y; Tan W; Shi X; Liu M; Zhu G
    Talanta; 2021 Oct; 233():122550. PubMed ID: 34215053
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Slanted spiral microfluidics for the ultra-fast, label-free isolation of circulating tumor cells.
    Warkiani ME; Guan G; Luan KB; Lee WC; Bhagat AA; Chaudhuri PK; Tan DS; Lim WT; Lee SC; Chen PC; Lim CT; Han J
    Lab Chip; 2014 Jan; 14(1):128-37. PubMed ID: 23949794
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Magnetic particles assisted capture and release of rare circulating tumor cells using wavy-herringbone structured microfluidic devices.
    Shi W; Wang S; Maarouf A; Uhl CG; He R; Yunus D; Liu Y
    Lab Chip; 2017 Sep; 17(19):3291-3299. PubMed ID: 28840927
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Precise Size-Based Cell Separation via the Coupling of Inertial Microfluidics and Deterministic Lateral Displacement.
    Xiang N; Wang J; Li Q; Han Y; Huang D; Ni Z
    Anal Chem; 2019 Aug; 91(15):10328-10334. PubMed ID: 31304740
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulation of aspect ratio for complete separation in an inertial microfluidic channel.
    Zhou J; Giridhar PV; Kasper S; Papautsky I
    Lab Chip; 2013 May; 13(10):1919-29. PubMed ID: 23529341
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Incorporation of lateral microfiltration with immunoaffinity for enhancing the capture efficiency of rare cells.
    Chen K; Amontree J; Varillas J; Zhang J; George TJ; Fan ZH
    Sci Rep; 2020 Aug; 10(1):14210. PubMed ID: 32848184
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inertial microfluidics for continuous particle separation in spiral microchannels.
    Kuntaegowdanahalli SS; Bhagat AA; Kumar G; Papautsky I
    Lab Chip; 2009 Oct; 9(20):2973-80. PubMed ID: 19789752
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic device for sheathless particle focusing and separation using a viscoelastic fluid.
    Nam J; Namgung B; Lim CT; Bae JE; Leo HL; Cho KS; Kim S
    J Chromatogr A; 2015 Aug; 1406():244-50. PubMed ID: 26122857
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deformability and size-based cancer cell separation using an integrated microfluidic device.
    Pang L; Shen S; Ma C; Ma T; Zhang R; Tian C; Zhao L; Liu W; Wang J
    Analyst; 2015 Nov; 140(21):7335-46. PubMed ID: 26366443
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spiral microchannel with ordered micro-obstacles for continuous and highly-efficient particle separation.
    Shen S; Tian C; Li T; Xu J; Chen SW; Tu Q; Yuan MS; Liu W; Wang J
    Lab Chip; 2017 Oct; 17(21):3578-3591. PubMed ID: 28975177
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-equilibrium Inertial Separation Array for High-throughput, Large-volume Blood Fractionation.
    Mutlu BR; Smith KC; Edd JF; Nadar P; Dlamini M; Kapur R; Toner M
    Sci Rep; 2017 Aug; 7(1):9915. PubMed ID: 28855584
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microscale Laminar Vortices for High-Purity Extraction and Release of Circulating Tumor Cells.
    Hur SC; Che J; Di Carlo D
    Methods Mol Biol; 2017; 1634():65-79. PubMed ID: 28819841
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Continuous inertial microparticle and blood cell separation in straight channels with local microstructures.
    Wu Z; Chen Y; Wang M; Chung AJ
    Lab Chip; 2016 Feb; 16(3):532-42. PubMed ID: 26725506
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pinched flow coupled shear-modulated inertial microfluidics for high-throughput rare blood cell separation.
    Bhagat AA; Hou HW; Li LD; Lim CT; Han J
    Lab Chip; 2011 Jun; 11(11):1870-8. PubMed ID: 21505682
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A passive microfluidic device for continuous microparticle enrichment.
    Fan LL; Zhu XL; Yan Q; Zhe J; Zhao L
    Electrophoresis; 2019 Mar; 40(6):1000-1009. PubMed ID: 30488639
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-throughput rare cell separation from blood samples using steric hindrance and inertial microfluidics.
    Shen S; Ma C; Zhao L; Wang Y; Wang JC; Xu J; Li T; Pang L; Wang J
    Lab Chip; 2014 Jul; 14(14):2525-38. PubMed ID: 24862501
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cavity-induced microstreaming for simultaneous on-chip pumping and size-based separation of cells and particles.
    Patel MV; Nanayakkara IA; Simon MG; Lee AP
    Lab Chip; 2014 Oct; 14(19):3860-72. PubMed ID: 25124727
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.