BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 28613313)

  • 1. Heterogeneity is key to hydrogel-based cartilage tissue regeneration.
    Lalitha Sridhar S; Schneider MC; Chu S; de Roucy G; Bryant SJ; Vernerey FJ
    Soft Matter; 2017 Jul; 13(28):4841-4855. PubMed ID: 28613313
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hyaluronan hydrogels with a low degree of modification as scaffolds for cartilage engineering.
    La Gatta A; Ricci G; Stellavato A; Cammarota M; Filosa R; Papa A; D'Agostino A; Portaccio M; Delfino I; De Rosa M; Schiraldi C
    Int J Biol Macromol; 2017 Oct; 103():978-989. PubMed ID: 28549864
    [TBL] [Abstract][Full Text] [Related]  

  • 3.
    Chu S; Sridhar SL; Akalp U; Skaalure SC; Vernerey FJ; Bryant SJ
    Tissue Eng Part A; 2017 Aug; 23(15-16):795-810. PubMed ID: 28351221
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoscale Thermosensitive Hydrogel Scaffolds Promote the Chondrogenic Differentiation of Dental Pulp Stem and Progenitor Cells: A Minimally Invasive Approach for Cartilage Regeneration.
    Talaat W; Aryal Ac S; Al Kawas S; Samsudin ABR; Kandile NG; Harding DRK; Ghoneim MM; Zeiada W; Jagal J; Aboelnaga A; Haider M
    Int J Nanomedicine; 2020; 15():7775-7789. PubMed ID: 33116500
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nondestructive evaluation of a new hydrolytically degradable and photo-clickable PEG hydrogel for cartilage tissue engineering.
    Neumann AJ; Quinn T; Bryant SJ
    Acta Biomater; 2016 Jul; 39():1-11. PubMed ID: 27180026
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomechanical study of the edge outgrowth phenomenon of encapsulated chondrocytic isogenous groups in the surface layer of hydrogel scaffolds for cartilage tissue engineering.
    Ng SS; Su K; Li C; Chan-Park MB; Wang DA; Chan V
    Acta Biomater; 2012 Jan; 8(1):244-52. PubMed ID: 21906699
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of alginate hydrogel cross-linking density on mechanical and biological behaviors for tissue engineering.
    Jang J; Seol YJ; Kim HJ; Kundu J; Kim SW; Cho DW
    J Mech Behav Biomed Mater; 2014 Sep; 37():69-77. PubMed ID: 24880568
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the role of hydrogel structure and degradation in controlling the transport of cell-secreted matrix molecules for engineered cartilage.
    Dhote V; Skaalure S; Akalp U; Roberts J; Bryant SJ; Vernerey FJ
    J Mech Behav Biomed Mater; 2013 Mar; 19():61-74. PubMed ID: 23276516
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of permeability and living space on cell fate and neo-tissue development in hydrogel-based scaffolds: a study with cartilaginous model.
    Fan C; Wang DA
    Macromol Biosci; 2015 Apr; 15(4):535-45. PubMed ID: 25557976
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tissue engineered hydrogels supporting 3D neural networks.
    Aregueta-Robles UA; Martens PJ; Poole-Warren LA; Green RA
    Acta Biomater; 2019 Sep; 95():269-284. PubMed ID: 30500450
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Injectable glycopolypeptide hydrogels as biomimetic scaffolds for cartilage tissue engineering.
    Ren K; He C; Xiao C; Li G; Chen X
    Biomaterials; 2015 May; 51():238-249. PubMed ID: 25771014
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanomaterials and hydrogel scaffolds for articular cartilage regeneration.
    Reddi AH; Becerra J; Andrades JA
    Tissue Eng Part B Rev; 2011 Oct; 17(5):301-5. PubMed ID: 21595612
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Programmable Hydrogels for Cell Encapsulation and Neo-Tissue Growth to Enable Personalized Tissue Engineering.
    Bryant SJ; Vernerey FJ
    Adv Healthc Mater; 2018 Jan; 7(1):. PubMed ID: 28975716
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro expression of cartilage-specific markers by chondrocytes on a biocompatible hydrogel: implications for engineering cartilage tissue.
    Risbud M; Ringe J; Bhonde R; Sittinger M
    Cell Transplant; 2001; 10(8):755-63. PubMed ID: 11814119
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tissue regeneration properties of hydrogels derived from biological macromolecules: A review.
    Kesharwani P; Alexander A; Shukla R; Jain S; Bisht A; Kumari K; Verma K; Sharma S
    Int J Biol Macromol; 2024 Jun; 271(Pt 2):132280. PubMed ID: 38744364
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regenerative potential of decellularized porcine nucleus pulposus hydrogel scaffolds: stem cell differentiation, matrix remodeling, and biocompatibility studies.
    Mercuri JJ; Patnaik S; Dion G; Gill SS; Liao J; Simionescu DT
    Tissue Eng Part A; 2013 Apr; 19(7-8):952-66. PubMed ID: 23140227
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of construct scale on the composition and functional properties of cartilaginous tissues engineered using bone marrow-derived mesenchymal stem cells.
    Buckley CT; Meyer EG; Kelly DJ
    Tissue Eng Part A; 2012 Feb; 18(3-4):382-96. PubMed ID: 21919793
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ chondrogenic differentiation of bone marrow stromal cells in bioactive self-assembled peptide gels.
    Kim JE; Kim SH; Jung Y
    J Biosci Bioeng; 2015 Jul; 120(1):91-8. PubMed ID: 25540912
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulation of mesenchymal stem cell chondrogenesis in a tunable hyaluronic acid hydrogel microenvironment.
    Toh WS; Lim TC; Kurisawa M; Spector M
    Biomaterials; 2012 May; 33(15):3835-45. PubMed ID: 22369963
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Smart Polymeric Hydrogels for Cartilage Tissue Engineering: A Review on the Chemistry and Biological Functions.
    Eslahi N; Abdorahim M; Simchi A
    Biomacromolecules; 2016 Nov; 17(11):3441-3463. PubMed ID: 27775329
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.