These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

341 related articles for article (PubMed ID: 28613338)

  • 1. Magnetic skyrmions without the skyrmion Hall effect in a magnetic nanotrack with perpendicular anisotropy.
    Zhang Y; Luo S; Yan B; Ou-Yang J; Yang X; Chen S; Zhu B; You L
    Nanoscale; 2017 Jul; 9(29):10212-10218. PubMed ID: 28613338
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Eliminating Skyrmion Hall Effect in Ferromagnetic Skyrmions.
    Zhang X; Wan G; Zhang J; Zhang YF; Pan J; Du S
    Nano Lett; 2024 Sep; 24(35):10796-10804. PubMed ID: 39190460
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Magnetic bilayer-skyrmions without skyrmion Hall effect.
    Zhang X; Zhou Y; Ezawa M
    Nat Commun; 2016 Jan; 7():10293. PubMed ID: 26782905
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A spin wave driven skyrmion-based diode on a T-shaped nanotrack.
    Saini S; Bindal N; Raj RK; Kaushik BK
    Nanoscale; 2024 May; 16(18):9004-9010. PubMed ID: 38623868
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Helium Ions Put Magnetic Skyrmions on the Track.
    Juge R; Bairagi K; Rana KG; Vogel J; Sall M; Mailly D; Pham VT; Zhang Q; Sisodia N; Foerster M; Aballe L; Belmeguenai M; Roussigné Y; Auffret S; Buda-Prejbeanu LD; Gaudin G; Ravelosona D; Boulle O
    Nano Lett; 2021 Apr; 21(7):2989-2996. PubMed ID: 33740371
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nontraditional Movement Behavior of Skyrmion in a Circular-Ring Nanotrack.
    Cai N; Zhang X; Hu Y; Liu Y
    Nanomaterials (Basel); 2023 Nov; 13(22):. PubMed ID: 37999331
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A ferromagnetic skyrmion-based diode with a voltage-controlled potential barrier.
    Zhao L; Liang X; Xia J; Zhao G; Zhou Y
    Nanoscale; 2020 May; 12(17):9507-9516. PubMed ID: 32314775
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Néel-Type Elliptical Skyrmions in a Laterally Asymmetric Magnetic Multilayer.
    Cui B; Yu D; Shao Z; Liu Y; Wu H; Nan P; Zhu Z; Wu C; Guo T; Chen P; Zhou HA; Xi L; Jiang W; Wang H; Liang S; Du H; Wang KL; Wang W; Wu K; Han X; Zhang G; Yang H; Yu G
    Adv Mater; 2021 Mar; 33(12):e2006924. PubMed ID: 33599001
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energy-efficient synthetic antiferromagnetic skyrmion-based artificial neuronal device.
    Verma RS; Raj RK; Verma G; Kaushik BK
    Nanotechnology; 2024 Aug; 35(43):. PubMed ID: 39084230
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ferrimagnetic Skyrmions in Topological Insulator/Ferrimagnet Heterostructures.
    Wu H; Groß F; Dai B; Lujan D; Razavi SA; Zhang P; Liu Y; Sobotkiewich K; Förster J; Weigand M; Schütz G; Li X; Gräfe J; Wang KL
    Adv Mater; 2020 Aug; 32(34):e2003380. PubMed ID: 32666575
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antiferromagnetic skyrmion repulsion based artificial neuron device.
    Bindal N; Ian CAC; Lew WS; Kaushik BK
    Nanotechnology; 2021 Mar; 32(21):. PubMed ID: 33530074
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single Chiral Skyrmions in Ultrathin Magnetic Films.
    Aranda AR; Guslienko KY
    Materials (Basel); 2018 Nov; 11(11):. PubMed ID: 30423873
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A magnetic skyrmion diode based on potential well inducting effect.
    Xu M; Chen W; Chen Y; Hu C; Zhang Z; Jiang G; Zhang J
    J Phys Condens Matter; 2023 Jul; 35(42):. PubMed ID: 37437589
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Visualizing the strongly reshaped skyrmion Hall effect in multilayer wire devices.
    Tan AKC; Ho P; Lourembam J; Huang L; Tan HK; Reichhardt CJO; Reichhardt C; Soumyanarayanan A
    Nat Commun; 2021 Jul; 12(1):4252. PubMed ID: 34253721
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlling skyrmion helicity via engineered Dzyaloshinskii-Moriya interactions.
    Díaz SA; Troncoso RE
    J Phys Condens Matter; 2016 Oct; 28(42):426005. PubMed ID: 27588612
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distinct magnetic field dependence of Néel skyrmion sizes in ultrathin nanodots.
    Tejo F; Riveros A; Escrig J; Guslienko KY; Chubykalo-Fesenko O
    Sci Rep; 2018 Apr; 8(1):6280. PubMed ID: 29674646
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energy efficient and fast reversal of a fixed skyrmion two-terminal memory with spin current assisted by voltage controlled magnetic anisotropy.
    Bhattacharya D; Al-Rashid MM; Atulasimha J
    Nanotechnology; 2017 Oct; 28(42):425201. PubMed ID: 28726688
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Skyrmions-based logic gates in one single nanotrack completely reconstructed via chirality barrier.
    Yu D; Yang H; Chshiev M; Fert A
    Natl Sci Rev; 2022 Dec; 9(12):nwac021. PubMed ID: 36713589
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Field-free deterministic ultrafast creation of magnetic skyrmions by spin-orbit torques.
    Büttner F; Lemesh I; Schneider M; Pfau B; Günther CM; Hessing P; Geilhufe J; Caretta L; Engel D; Krüger B; Viefhaus J; Eisebitt S; Beach GSD
    Nat Nanotechnol; 2017 Nov; 12(11):1040-1044. PubMed ID: 28967891
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Harnessing Skyrmion Hall Effect by Thickness Gradients in Wedge-Shaped Samples of Cubic Helimagnets.
    Shigenaga T; Leonov AO
    Nanomaterials (Basel); 2023 Jul; 13(14):. PubMed ID: 37513084
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.