These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
341 related articles for article (PubMed ID: 28613338)
1. Magnetic skyrmions without the skyrmion Hall effect in a magnetic nanotrack with perpendicular anisotropy. Zhang Y; Luo S; Yan B; Ou-Yang J; Yang X; Chen S; Zhu B; You L Nanoscale; 2017 Jul; 9(29):10212-10218. PubMed ID: 28613338 [TBL] [Abstract][Full Text] [Related]
2. Eliminating Skyrmion Hall Effect in Ferromagnetic Skyrmions. Zhang X; Wan G; Zhang J; Zhang YF; Pan J; Du S Nano Lett; 2024 Sep; 24(35):10796-10804. PubMed ID: 39190460 [TBL] [Abstract][Full Text] [Related]
3. Magnetic bilayer-skyrmions without skyrmion Hall effect. Zhang X; Zhou Y; Ezawa M Nat Commun; 2016 Jan; 7():10293. PubMed ID: 26782905 [TBL] [Abstract][Full Text] [Related]
4. A spin wave driven skyrmion-based diode on a T-shaped nanotrack. Saini S; Bindal N; Raj RK; Kaushik BK Nanoscale; 2024 May; 16(18):9004-9010. PubMed ID: 38623868 [TBL] [Abstract][Full Text] [Related]
5. Helium Ions Put Magnetic Skyrmions on the Track. Juge R; Bairagi K; Rana KG; Vogel J; Sall M; Mailly D; Pham VT; Zhang Q; Sisodia N; Foerster M; Aballe L; Belmeguenai M; Roussigné Y; Auffret S; Buda-Prejbeanu LD; Gaudin G; Ravelosona D; Boulle O Nano Lett; 2021 Apr; 21(7):2989-2996. PubMed ID: 33740371 [TBL] [Abstract][Full Text] [Related]
6. Nontraditional Movement Behavior of Skyrmion in a Circular-Ring Nanotrack. Cai N; Zhang X; Hu Y; Liu Y Nanomaterials (Basel); 2023 Nov; 13(22):. PubMed ID: 37999331 [TBL] [Abstract][Full Text] [Related]
7. A ferromagnetic skyrmion-based diode with a voltage-controlled potential barrier. Zhao L; Liang X; Xia J; Zhao G; Zhou Y Nanoscale; 2020 May; 12(17):9507-9516. PubMed ID: 32314775 [TBL] [Abstract][Full Text] [Related]
8. Néel-Type Elliptical Skyrmions in a Laterally Asymmetric Magnetic Multilayer. Cui B; Yu D; Shao Z; Liu Y; Wu H; Nan P; Zhu Z; Wu C; Guo T; Chen P; Zhou HA; Xi L; Jiang W; Wang H; Liang S; Du H; Wang KL; Wang W; Wu K; Han X; Zhang G; Yang H; Yu G Adv Mater; 2021 Mar; 33(12):e2006924. PubMed ID: 33599001 [TBL] [Abstract][Full Text] [Related]
16. Distinct magnetic field dependence of Néel skyrmion sizes in ultrathin nanodots. Tejo F; Riveros A; Escrig J; Guslienko KY; Chubykalo-Fesenko O Sci Rep; 2018 Apr; 8(1):6280. PubMed ID: 29674646 [TBL] [Abstract][Full Text] [Related]
17. Energy efficient and fast reversal of a fixed skyrmion two-terminal memory with spin current assisted by voltage controlled magnetic anisotropy. Bhattacharya D; Al-Rashid MM; Atulasimha J Nanotechnology; 2017 Oct; 28(42):425201. PubMed ID: 28726688 [TBL] [Abstract][Full Text] [Related]
18. Skyrmions-based logic gates in one single nanotrack completely reconstructed via chirality barrier. Yu D; Yang H; Chshiev M; Fert A Natl Sci Rev; 2022 Dec; 9(12):nwac021. PubMed ID: 36713589 [TBL] [Abstract][Full Text] [Related]
19. Field-free deterministic ultrafast creation of magnetic skyrmions by spin-orbit torques. Büttner F; Lemesh I; Schneider M; Pfau B; Günther CM; Hessing P; Geilhufe J; Caretta L; Engel D; Krüger B; Viefhaus J; Eisebitt S; Beach GSD Nat Nanotechnol; 2017 Nov; 12(11):1040-1044. PubMed ID: 28967891 [TBL] [Abstract][Full Text] [Related]
20. Harnessing Skyrmion Hall Effect by Thickness Gradients in Wedge-Shaped Samples of Cubic Helimagnets. Shigenaga T; Leonov AO Nanomaterials (Basel); 2023 Jul; 13(14):. PubMed ID: 37513084 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]