BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 28613351)

  • 21. Choroidal Neovascularization in Malattia Leventinese Diagnosed Using Optical Coherence Tomography Angiography.
    Serra R; Coscas F; Messaoudi N; Srour M; Souied E
    Am J Ophthalmol; 2017 Apr; 176():108-117. PubMed ID: 28088509
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Delayed Absorption of Subretinal Fluid after Retinal Reattachment Surgery and Associated Choroidal Features.
    Kim JM; Lee EJ; Cho GE; Bae K; Lee JY; Han G; Kang SW
    Korean J Ophthalmol; 2017 Oct; 31(5):402-411. PubMed ID: 28914005
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Optical Coherence Tomography Angiography Demonstration of Choroidal Neovascularization in Malattia Leventinese.
    Corbelli E; Corvi F; Carnevali A; Querques L; Zucchiatti I; Bandello F; Querques G
    Ophthalmic Surg Lasers Imaging Retina; 2016 Jun; 47(6):602-4. PubMed ID: 27327295
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Optical Coherence Tomography Angiography Study of Choroidal Neovascularization Associated With Focal Choroidal Excavation.
    Chawla R; Mittal K; Vohra R
    Ophthalmic Surg Lasers Imaging Retina; 2016 Oct; 47(10):969-971. PubMed ID: 27759866
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fundus measurements with indirect ophthalmoscopy. An experimental approach.
    Wells CG; Barrall JL; Martin DC
    Arch Ophthalmol; 1992 Sep; 110(9):1303-8. PubMed ID: 1520121
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Imaging the microvasculature of choroidal melanomas with confocal indocyanine green scanning laser ophthalmoscopy.
    Mueller AJ; Bartsch DU; Folberg R; Mehaffey MG; Boldt HC; Meyer M; Gardner LM; Goldbaum MH; Pe'er J; Freeman WR
    Arch Ophthalmol; 1998 Jan; 116(1):31-9. PubMed ID: 9445206
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Choroidal Thickness Influences Near-Infrared Reflectance Intensity in Eyes With Geographic Atrophy Due To Age-Related Macular Degeneration.
    Dolz-Marco R; Gal-Or O; Freund KB
    Invest Ophthalmol Vis Sci; 2016 Nov; 57(14):6440-6446. PubMed ID: 27893108
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Choroidal metastases fundus autofluorescence imaging: correlation to clinical, OCT, and fluorescein angiographic findings.
    Natesh S; Chin KJ; Finger PT
    Ophthalmic Surg Lasers Imaging; 2010; 41(4):406-12. PubMed ID: 20438045
    [TBL] [Abstract][Full Text] [Related]  

  • 29. En Face Optical Coherence Tomography Angiography Imaging Versus Fundus Photography in the Measurement of Choroidal Nevi.
    Lee MD; Kaidonis G; Kim AY; Shields RA; Leng T
    Ophthalmic Surg Lasers Imaging Retina; 2017 Sep; 48(9):741-747. PubMed ID: 28902335
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ultra-widefield fundus imaging in gas-filled eyes after vitrectomy.
    Inoue M; Koto T; Hirota K; Hirakata A
    BMC Ophthalmol; 2017 Jul; 17(1):114. PubMed ID: 28673266
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ultra-wide-field fluorescein angiography of the ocular fundus.
    Manivannan A; Plskova J; Farrow A; Mckay S; Sharp PF; Forrester JV
    Am J Ophthalmol; 2005 Sep; 140(3):525-7. PubMed ID: 16139004
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ultra-widefield imaging with autofluorescence and indocyanine green angiography in central serous chorioretinopathy.
    Pang CE; Shah VP; Sarraf D; Freund KB
    Am J Ophthalmol; 2014 Aug; 158(2):362-371.e2. PubMed ID: 24794091
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Segregation of ophthalmoscopic characteristics according to choroidal thickness in patients with early age-related macular degeneration.
    Switzer DW; Mendonça LS; Saito M; Zweifel SA; Spaide RF
    Retina; 2012 Jul; 32(7):1265-71. PubMed ID: 22222760
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Angiographic and optical coherence tomography characteristics of recent myopic choroidal neovascularization.
    Leveziel N; Caillaux V; Bastuji-Garin S; Zmuda M; Souied EH
    Am J Ophthalmol; 2013 May; 155(5):913-9. PubMed ID: 23352343
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Optical coherence tomography angiography in choroidal haemangioma: small case series.
    Lo Giudice G; Catania AG; Galan A
    Acta Ophthalmol; 2018 May; 96(3):e408-e409. PubMed ID: 28636256
    [No Abstract]   [Full Text] [Related]  

  • 36. Measurement of choroidal melanoma basal diameter by wide-angle digital fundus camera: a comparison with ultrasound measurement.
    Pe'er J; Sancho C; Cantu J; Eilam S; Barzel I; Shulman M; Blumenthal EZ
    Ophthalmologica; 2006; 220(3):194-7. PubMed ID: 16679796
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Diagnostic modalities in choroidal melanoma.
    Char DH; Stone RD; Irvine AR; Crawford JB; Hilton GF; Lonn LI; Schwartz A
    Am J Ophthalmol; 1980 Feb; 89(2):223-30. PubMed ID: 7355976
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tele-ophthalmology for the monitoring of choroidal and iris nevi: a pilot study.
    Lapere S; Weis E
    Can J Ophthalmol; 2018 Oct; 53(5):471-473. PubMed ID: 30340713
    [TBL] [Abstract][Full Text] [Related]  

  • 39. HOW TO MEASURE THE LARGEST BASAL DIMENSION OF CHOROIDAL MELANOMA: A MATHEMATICAL STUDY.
    França M; Ayres B; Parrish E; Demirci H
    Retina; 2019 Nov; 39(11):2198-2204. PubMed ID: 30085978
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Posterior Segment Distortion in Ultra-Widefield Imaging Compared to Conventional Modalities.
    Nicholson L; Goh LY; Marshall E; Vazquez-Alfageme C; Chatziralli I; Clemo M; Hykin PG; Sivaprasad S
    Ophthalmic Surg Lasers Imaging Retina; 2016 Jul; 47(7):644-51. PubMed ID: 27434896
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.