These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 28614374)

  • 1. Accurate prediction of functional effects for variants by combining gradient tree boosting with optimal neighborhood properties.
    Pan Y; Liu D; Deng L
    PLoS One; 2017; 12(6):e0179314. PubMed ID: 28614374
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A boosting approach for prediction of protein-RNA binding residues.
    Tang Y; Liu D; Wang Z; Wen T; Deng L
    BMC Bioinformatics; 2017 Dec; 18(Suppl 13):465. PubMed ID: 29219069
    [TBL] [Abstract][Full Text] [Related]  

  • 3. FunSAV: predicting the functional effect of single amino acid variants using a two-stage random forest model.
    Wang M; Zhao XM; Takemoto K; Xu H; Li Y; Akutsu T; Song J
    PLoS One; 2012; 7(8):e43847. PubMed ID: 22937107
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PredPSD: A Gradient Tree Boosting Approach for Single-Stranded and Double-Stranded DNA Binding Protein Prediction.
    Tan C; Wang T; Yang W; Deng L
    Molecules; 2019 Dec; 25(1):. PubMed ID: 31888057
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Boosting prediction performance of protein-protein interaction hot spots by using structural neighborhood properties.
    Deng L; Guan J; Wei X; Yi Y; Zhang QC; Zhou S
    J Comput Biol; 2013 Nov; 20(11):878-91. PubMed ID: 24134392
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SuSPect: enhanced prediction of single amino acid variant (SAV) phenotype using network features.
    Yates CM; Filippis I; Kelley LA; Sternberg MJ
    J Mol Biol; 2014 Jul; 426(14):2692-701. PubMed ID: 24810707
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Blind prediction of deleterious amino acid variations with SNPs&GO.
    Capriotti E; Martelli PL; Fariselli P; Casadio R
    Hum Mutat; 2017 Sep; 38(9):1064-1071. PubMed ID: 28102005
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Statistical geometry based prediction of nonsynonymous SNP functional effects using random forest and neuro-fuzzy classifiers.
    Barenboim M; Masso M; Vaisman II; Jamison DC
    Proteins; 2008 Jun; 71(4):1930-9. PubMed ID: 18186470
    [TBL] [Abstract][Full Text] [Related]  

  • 9. XGBPRH: Prediction of Binding Hot Spots at Protein⁻RNA Interfaces Utilizing Extreme Gradient Boosting.
    Deng L; Sui Y; Zhang J
    Genes (Basel); 2019 Mar; 10(3):. PubMed ID: 30901953
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting Severity of Disease-Causing Variants.
    Niroula A; Vihinen M
    Hum Mutat; 2017 Apr; 38(4):357-364. PubMed ID: 28070986
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Boosting phosphorylation site prediction with sequence feature-based machine learning.
    Maiti S; Hassan A; Mitra P
    Proteins; 2020 Feb; 88(2):284-291. PubMed ID: 31412138
    [TBL] [Abstract][Full Text] [Related]  

  • 12. LMTRDA: Using logistic model tree to predict MiRNA-disease associations by fusing multi-source information of sequences and similarities.
    Wang L; You ZH; Chen X; Li YM; Dong YN; Li LP; Zheng K
    PLoS Comput Biol; 2019 Mar; 15(3):e1006865. PubMed ID: 30917115
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome-wide association data classification and SNPs selection using two-stage quality-based Random Forests.
    Nguyen TT; Huang J; Wu Q; Nguyen T; Li M
    BMC Genomics; 2015; 16 Suppl 2(Suppl 2):S5. PubMed ID: 25708662
    [TBL] [Abstract][Full Text] [Related]  

  • 14. EGBMMDA: Extreme Gradient Boosting Machine for MiRNA-Disease Association prediction.
    Chen X; Huang L; Xie D; Zhao Q
    Cell Death Dis; 2018 Jan; 9(1):3. PubMed ID: 29305594
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved prediction of protein-protein interaction using a hybrid of functional-link Siamese neural network and gradient boosting machines.
    Mahapatra S; Sahu SS
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34245238
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved detection of rare genetic variants for diseases.
    Zhang L; Pei YF; Li J; Papasian CJ; Deng HW
    PLoS One; 2010 Nov; 5(11):e13857. PubMed ID: 21079782
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting potential miRNA-disease associations by combining gradient boosting decision tree with logistic regression.
    Zhou S; Wang S; Wu Q; Azim R; Li W
    Comput Biol Chem; 2020 Apr; 85():107200. PubMed ID: 32058946
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Can Predictive Modeling Tools Identify Patients at High Risk of Prolonged Opioid Use After ACL Reconstruction?
    Anderson AB; Grazal CF; Balazs GC; Potter BK; Dickens JF; Forsberg JA
    Clin Orthop Relat Res; 2020 Jul; 478(7):0-1618. PubMed ID: 32282466
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Minimalist ensemble algorithms for genome-wide protein localization prediction.
    Lin JR; Mondal AM; Liu R; Hu J
    BMC Bioinformatics; 2012 Jul; 13():157. PubMed ID: 22759391
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Network-based prediction and knowledge mining of disease genes.
    Carson MB; Lu H
    BMC Med Genomics; 2015; 8 Suppl 2(Suppl 2):S9. PubMed ID: 26043920
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.