BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 28614652)

  • 1. Taking a Bite Out of Amyloid: Mechanistic Insights into α-Synuclein Degradation by Cathepsin L.
    McGlinchey RP; Dominah GA; Lee JC
    Biochemistry; 2017 Aug; 56(30):3881-3884. PubMed ID: 28614652
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cathepsin K is a potent disaggregase of α-synuclein fibrils.
    McGlinchey RP; Lacy SM; Walker RL; Lee JC
    Biochem Biophys Res Commun; 2020 Sep; 529(4):1106-1111. PubMed ID: 32819572
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cysteine cathepsins are essential in lysosomal degradation of α-synuclein.
    McGlinchey RP; Lee JC
    Proc Natl Acad Sci U S A; 2015 Jul; 112(30):9322-7. PubMed ID: 26170293
    [TBL] [Abstract][Full Text] [Related]  

  • 4. C-terminal α-synuclein truncations are linked to cysteine cathepsin activity in Parkinson's disease.
    McGlinchey RP; Lacy SM; Huffer KE; Tayebi N; Sidransky E; Lee JC
    J Biol Chem; 2019 Jun; 294(25):9973-9984. PubMed ID: 31092553
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cathepsin L prevents the accumulation of alpha-synuclein fibrils in the cell.
    Matsuki A; Watanabe Y; Hashimoto S; Hoshino A; Matoba S
    Genes Cells; 2024 Apr; 29(4):328-336. PubMed ID: 38366711
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-Pressure-Driven Reversible Dissociation of α-Synuclein Fibrils Reveals Structural Hierarchy.
    Piccirilli F; Plotegher N; Ortore MG; Tessari I; Brucale M; Spinozzi F; Beltramini M; Mariani P; Militello V; Lupi S; Perucchi A; Bubacco L
    Biophys J; 2017 Oct; 113(8):1685-1696. PubMed ID: 29045863
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The chaperone activity of α-synuclein: Utilizing deletion mutants to map its interaction with target proteins.
    Rekas A; Ahn KJ; Kim J; Carver JA
    Proteins; 2012 May; 80(5):1316-25. PubMed ID: 22274962
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanistic basis for receptor-mediated pathological α-synuclein fibril cell-to-cell transmission in Parkinson's disease.
    Zhang S; Liu YQ; Jia C; Lim YJ; Feng G; Xu E; Long H; Kimura Y; Tao Y; Zhao C; Wang C; Liu Z; Hu JJ; Ma MR; Liu Z; Jiang L; Li D; Wang R; Dawson VL; Dawson TM; Li YM; Mao X; Liu C
    Proc Natl Acad Sci U S A; 2021 Jun; 118(26):. PubMed ID: 34172566
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The N terminus of α-synuclein dictates fibril formation.
    McGlinchey RP; Ni X; Shadish JA; Jiang J; Lee JC
    Proc Natl Acad Sci U S A; 2021 Aug; 118(35):. PubMed ID: 34452994
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural Insights into α-Synuclein Fibril Polymorphism: Effects of Parkinson's Disease-Related C-Terminal Truncations.
    Ni X; McGlinchey RP; Jiang J; Lee JC
    J Mol Biol; 2019 Sep; 431(19):3913-3919. PubMed ID: 31295458
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A synchrotron-based hydroxyl radical footprinting analysis of amyloid fibrils and prefibrillar intermediates with residue-specific resolution.
    Klinger AL; Kiselar J; Ilchenko S; Komatsu H; Chance MR; Axelsen PH
    Biochemistry; 2014 Dec; 53(49):7724-34. PubMed ID: 25382225
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amyloid fibril structure of α-synuclein determined by cryo-electron microscopy.
    Li Y; Zhao C; Luo F; Liu Z; Gui X; Luo Z; Zhang X; Li D; Liu C; Li X
    Cell Res; 2018 Sep; 28(9):897-903. PubMed ID: 30065316
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isolation of short peptide fragments from alpha-synuclein fibril core identifies a residue important for fibril nucleation: a possible implication for diagnostic applications.
    Yagi H; Takeuchi H; Ogawa S; Ito N; Sakane I; Hongo K; Mizobata T; Goto Y; Kawata Y
    Biochim Biophys Acta; 2010 Oct; 1804(10):2077-87. PubMed ID: 20637318
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural features of α-synuclein amyloid fibrils revealed by Raman spectroscopy.
    Flynn JD; McGlinchey RP; Walker RL; Lee JC
    J Biol Chem; 2018 Jan; 293(3):767-776. PubMed ID: 29191831
    [TBL] [Abstract][Full Text] [Related]  

  • 15. N-Terminal Acetylation Affects α-Synuclein Fibril Polymorphism.
    Watson MD; Lee JC
    Biochemistry; 2019 Sep; 58(35):3630-3633. PubMed ID: 31424918
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Amyloid Fibril-Forming β-Sheet Regions of Amyloid β and α-Synuclein Preferentially Interact with the Molecular Chaperone 14-3-3ζ.
    Williams DM; Thorn DC; Dobson CM; Meehan S; Jackson SE; Woodcock JM; Carver JA
    Molecules; 2021 Oct; 26(20):. PubMed ID: 34684701
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular insights into the interaction between alpha-synuclein and docosahexaenoic acid.
    De Franceschi G; Frare E; Bubacco L; Mammi S; Fontana A; de Laureto PP
    J Mol Biol; 2009 Nov; 394(1):94-107. PubMed ID: 19747490
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A pH-dependent switch promotes β-synuclein fibril formation via glutamate residues.
    Moriarty GM; Olson MP; Atieh TB; Janowska MK; Khare SD; Baum J
    J Biol Chem; 2017 Sep; 292(39):16368-16379. PubMed ID: 28710275
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lysosomal enzyme cathepsin B enhances the aggregate forming activity of exogenous α-synuclein fibrils.
    Tsujimura A; Taguchi K; Watanabe Y; Tatebe H; Tokuda T; Mizuno T; Tanaka M
    Neurobiol Dis; 2015 Jan; 73():244-53. PubMed ID: 25466281
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interference of α-Synuclein Uptake by Monomeric β-Amyloid1-40 and Potential Core Acting Site of the Interference.
    Chan DK; Braidy N; Xu YH; Chataway T; Guo F; Guillemin GJ; Teo C; Gai WP
    Neurotox Res; 2016 Oct; 30(3):479-85. PubMed ID: 27364697
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.