BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

450 related articles for article (PubMed ID: 28614653)

  • 1. Microfluidics Enabled Bottom-Up Engineering of 3D Vascularized Tumor for Drug Discovery.
    Agarwal P; Wang H; Sun M; Xu J; Zhao S; Liu Z; Gooch KJ; Zhao Y; Lu X; He X
    ACS Nano; 2017 Jul; 11(7):6691-6702. PubMed ID: 28614653
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production of Uniform 3D Microtumors in Hydrogel Microwell Arrays for Measurement of Viability, Morphology, and Signaling Pathway Activation.
    Singh M; Close DA; Mukundan S; Johnston PA; Sant S
    Assay Drug Dev Technol; 2015 Nov; 13(9):570-83. PubMed ID: 26274587
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiwell capillarity-based microfluidic device for the study of 3D tumour tissue-2D endothelium interactions and drug screening in co-culture models.
    Virumbrales-Muñoz M; Ayuso JM; Olave M; Monge R; de Miguel D; Martínez-Lostao L; Le Gac S; Doblare M; Ochoa I; Fernandez LJ
    Sci Rep; 2017 Sep; 7(1):11998. PubMed ID: 28931839
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-Dimensional Cell Cultures as an In Vitro Tool for Prostate Cancer Modeling and Drug Discovery.
    Fontana F; Raimondi M; Marzagalli M; Sommariva M; Gagliano N; Limonta P
    Int J Mol Sci; 2020 Sep; 21(18):. PubMed ID: 32948069
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mini-pillar array for hydrogel-supported 3D culture and high-content histologic analysis of human tumor spheroids.
    Kang J; Lee DW; Hwang HJ; Yeon SE; Lee MY; Kuh HJ
    Lab Chip; 2016 Jun; 16(12):2265-76. PubMed ID: 27194205
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-throughput screening with nanoimprinting 3D culture for efficient drug development by mimicking the tumor environment.
    Yoshii Y; Furukawa T; Waki A; Okuyama H; Inoue M; Itoh M; Zhang MR; Wakizaka H; Sogawa C; Kiyono Y; Yoshii H; Fujibayashi Y; Saga T
    Biomaterials; 2015 May; 51():278-289. PubMed ID: 25771018
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemotaxis-driven assembly of endothelial barrier in a tumor-on-a-chip platform.
    Aung A; Theprungsirikul J; Lim HL; Varghese S
    Lab Chip; 2016 May; 16(10):1886-98. PubMed ID: 27097908
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pathophysiologically relevant in vitro tumor models for drug screening.
    Das V; Bruzzese F; Konečný P; Iannelli F; Budillon A; Hajdúch M
    Drug Discov Today; 2015 Jul; 20(7):848-55. PubMed ID: 25908576
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-dimensional culture models to study drug resistance in breast cancer.
    Fisher MF; Rao SS
    Biotechnol Bioeng; 2020 Jul; 117(7):2262-2278. PubMed ID: 32297971
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidic modelling of the tumor microenvironment for anti-cancer drug development.
    Shang M; Soon RH; Lim CT; Khoo BL; Han J
    Lab Chip; 2019 Jan; 19(3):369-386. PubMed ID: 30644496
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Towards a high throughput impedimetric screening of chemosensitivity of cancer cells suspended in hydrogel and cultured in a paper substrate.
    Lei KF; Liu TK; Tsang NM
    Biosens Bioelectron; 2018 Feb; 100():355-360. PubMed ID: 28946107
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of drugs as single agents or in combination to prevent carcinoma dissemination in a microfluidic 3D environment.
    Bai J; Tu TY; Kim C; Thiery JP; Kamm RD
    Oncotarget; 2015 Nov; 6(34):36603-14. PubMed ID: 26474384
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using high throughput microtissue culture to study the difference in prostate cancer cell behavior and drug response in 2D and 3D co-cultures.
    Mosaad E; Chambers K; Futrega K; Clements J; Doran MR
    BMC Cancer; 2018 May; 18(1):592. PubMed ID: 29793440
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3-Dimensional culture systems for anti-cancer compound profiling and high-throughput screening reveal increases in EGFR inhibitor-mediated cytotoxicity compared to monolayer culture systems.
    Howes AL; Richardson RD; Finlay D; Vuori K
    PLoS One; 2014; 9(9):e108283. PubMed ID: 25247711
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D-3 Tumor Models in Drug Discovery for Analysis of Immune Cell Infiltration.
    Osswald A; Hedrich V; Sommergruber W
    Methods Mol Biol; 2019; 1953():151-162. PubMed ID: 30912021
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alginate core-shell beads for simplified three-dimensional tumor spheroid culture and drug screening.
    Yu L; Ni C; Grist SM; Bayly C; Cheung KC
    Biomed Microdevices; 2015 Apr; 17(2):33. PubMed ID: 25681969
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human in vitro vascularized micro-organ and micro-tumor models are reproducible organ-on-a-chip platforms for studies of anticancer drugs.
    Liu Y; Sakolish C; Chen Z; Phan DTT; Bender RHF; Hughes CCW; Rusyn I
    Toxicology; 2020 Dec; 445():152601. PubMed ID: 32980478
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mimicking Tumors: Toward More Predictive In Vitro Models for Peptide- and Protein-Conjugated Drugs.
    van den Brand D; Massuger LF; Brock R; Verdurmen WP
    Bioconjug Chem; 2017 Mar; 28(3):846-856. PubMed ID: 28122451
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RNAi High-Throughput Screening of Single- and Multi-Cell-Type Tumor Spheroids: A Comprehensive Analysis in Two and Three Dimensions.
    Fu J; Fernandez D; Ferrer M; Titus SA; Buehler E; Lal-Nag MA
    SLAS Discov; 2017 Jun; 22(5):525-536. PubMed ID: 28277887
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Near-physiological microenvironment simulation on chip to evaluate drug resistance of different loci in tumour mass.
    Wang S; Mao S; Li M; Li HF; Lin JM
    Talanta; 2019 Jan; 191():67-73. PubMed ID: 30262100
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.