BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 28614655)

  • 1. Novel Integration of Perovskite Solar Cell and Supercapacitor Based on Carbon Electrode for Hybridizing Energy Conversion and Storage.
    Liu Z; Zhong Y; Sun B; Liu X; Han J; Shi T; Tang Z; Liao G
    ACS Appl Mater Interfaces; 2017 Jul; 9(27):22361-22368. PubMed ID: 28614655
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A power pack based on organometallic perovskite solar cell and supercapacitor.
    Xu X; Li S; Zhang H; Shen Y; Zakeeruddin SM; Graetzel M; Cheng YB; Wang M
    ACS Nano; 2015 Feb; 9(2):1782-7. PubMed ID: 25611128
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monolithically Integrated Self-Charging Power Pack Consisting of a Silicon Nanowire Array/Conductive Polymer Hybrid Solar Cell and a Laser-Scribed Graphene Supercapacitor.
    Liu H; Li M; Kaner RB; Chen S; Pei Q
    ACS Appl Mater Interfaces; 2018 May; 10(18):15609-15615. PubMed ID: 29692171
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Perovskite Photovoltachromic Supercapacitor with All-Transparent Electrodes.
    Zhou F; Ren Z; Zhao Y; Shen X; Wang A; Li YY; Surya C; Chai Y
    ACS Nano; 2016 Jun; 10(6):5900-8. PubMed ID: 27159013
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrating perovskite solar cells into a flexible fiber.
    Qiu L; Deng J; Lu X; Yang Z; Peng H
    Angew Chem Int Ed Engl; 2014 Sep; 53(39):10425-8. PubMed ID: 25047870
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conversion of Solar Energy into Electrical Energy Storage: Supercapacitor as an Ultrafast Energy-Storage Device Made from Biodegradable Agar-Agar as a Novel and Low-Cost Carbon Precursor.
    Vijayakumar M; Adduru J; Rao TN; Karthik M
    Glob Chall; 2018 Oct; 2(10):1800037. PubMed ID: 31565308
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Realizing Stable Artificial Photon Energy Harvesting Based on Perovskite Solar Cells for Diverse Applications.
    Sun H; Deng K; Jiang Y; Ni J; Xiong J; Li L
    Small; 2020 Mar; 16(10):e1906681. PubMed ID: 32049437
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Air-Processed All-Inorganic Halide Perovskites Integrated Photorechargeable Supercapacitors.
    Yadav A; Saini A; Bag M
    ACS Appl Mater Interfaces; 2024 Jun; 16(25):32232-32239. PubMed ID: 38865562
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wearable energy-smart ribbons for synchronous energy harvest and storage.
    Li C; Islam MM; Moore J; Sleppy J; Morrison C; Konstantinov K; Dou SX; Renduchintala C; Thomas J
    Nat Commun; 2016 Nov; 7():13319. PubMed ID: 27834367
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbon-Electrode-Tailored All-Inorganic Perovskite Solar Cells To Harvest Solar and Water-Vapor Energy.
    Duan J; Hu T; Zhao Y; He B; Tang Q
    Angew Chem Int Ed Engl; 2018 May; 57(20):5746-5749. PubMed ID: 29603834
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Review of Integrated Systems Based on Perovskite Solar Cells and Energy Storage Units: Fundamental, Progresses, Challenges, and Perspectives.
    Zhang X; Song WL; Tu J; Wang J; Wang M; Jiao S
    Adv Sci (Weinh); 2021 Jul; 8(14):2100552. PubMed ID: 34306984
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Silicon Nanowire/Polymer Hybrid Solar Cell-Supercapacitor: A Self-Charging Power Unit with a Total Efficiency of 10.5.
    Liu R; Wang J; Sun T; Wang M; Wu C; Zou H; Song T; Zhang X; Lee ST; Wang ZL; Sun B
    Nano Lett; 2017 Jul; 17(7):4240-4247. PubMed ID: 28586231
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photorechargeable Hybrid Halide Perovskite Supercapacitors.
    Kumar R; Kumar A; Shukla PS; Varma GD; Venkataraman D; Bag M
    ACS Appl Mater Interfaces; 2022 Aug; 14(31):35592-35599. PubMed ID: 35903891
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioinspired fractal electrodes for solar energy storages.
    Thekkekara LV; Gu M
    Sci Rep; 2017 Mar; 7():45585. PubMed ID: 28361924
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selected functionalization of continuous graphene fibers for integrated energy conversion and storage.
    Yao Y; Lv T; Li N; Chen Z; Zhang C; Chen T
    Sci Bull (Beijing); 2020 Mar; 65(6):486-495. PubMed ID: 36747438
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Graphene-Based Integrated Photovoltaic Energy Harvesting/Storage Device.
    Chien CT; Hiralal P; Wang DY; Huang IS; Chen CC; Chen CW; Amaratunga GA
    Small; 2015 Jun; 11(24):2929-37. PubMed ID: 25703342
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cotton-textile-enabled flexible self-sustaining power packs via roll-to-roll fabrication.
    Gao Z; Bumgardner C; Song N; Zhang Y; Li J; Li X
    Nat Commun; 2016 May; 7():11586. PubMed ID: 27189776
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Perovskite-Solar-Cell-Powered Integrated Fuel Conversion and Energy-Storage Devices.
    Yang G; Yang W; Gu H; Fu Y; Wang B; Cai H; Xia J; Zhang N; Liang C; Xing G; Yang S; Chen Y; Huang W
    Adv Mater; 2023 Nov; 35(44):e2300383. PubMed ID: 36906920
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-powered textile for wearable electronics by hybridizing fiber-shaped nanogenerators, solar cells, and supercapacitors.
    Wen Z; Yeh MH; Guo H; Wang J; Zi Y; Xu W; Deng J; Zhu L; Wang X; Hu C; Zhu L; Sun X; Wang ZL
    Sci Adv; 2016 Oct; 2(10):e1600097. PubMed ID: 27819039
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Self-supported Graphene/Carbon Nanotube Hollow Fiber for Integrated Energy Conversion and Storage.
    Liu K; Chen Z; Lv T; Yao Y; Li N; Li H; Chen T
    Nanomicro Lett; 2020 Feb; 12(1):64. PubMed ID: 34138272
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.