BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 28614662)

  • 1. Investigating Liquid-Liquid Phase Separation of a Monoclonal Antibody Using Solution-State NMR Spectroscopy: Effect of Arg·Glu and Arg·HCl.
    Kheddo P; Bramham JE; Dearman RJ; Uddin S; van der Walle CF; Golovanov AP
    Mol Pharm; 2017 Aug; 14(8):2852-2860. PubMed ID: 28614662
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterizing monoclonal antibody formulations in arginine glutamate solutions using
    Kheddo P; Cliff MJ; Uddin S; van der Walle CF; Golovanov AP
    MAbs; 2016 Oct; 8(7):1245-1258. PubMed ID: 27589351
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stability of a high-concentration monoclonal antibody solution produced by liquid-liquid phase separation.
    Bramham JE; Davies SA; Podmore A; Golovanov AP
    MAbs; 2021; 13(1):1940666. PubMed ID: 34225583
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Arginine suppresses opalescence and liquid-liquid phase separation in IgG solutions.
    Oki S; Nishinami S; Shiraki K
    Int J Biol Macromol; 2018 Oct; 118(Pt B):1708-1712. PubMed ID: 29981328
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elucidating the weak protein-protein interaction mechanisms behind the liquid-liquid phase separation of a mAb solution by different types of additives.
    Wu G; Wang S; Tian Z; Zhang N; Sheng H; Dai W; Qian F
    Eur J Pharm Biopharm; 2017 Nov; 120():1-8. PubMed ID: 28754261
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Liquid-liquid phase separation causes high turbidity and pressure during low pH elution process in Protein A chromatography.
    Luo H; Lee N; Wang X; Li Y; Schmelzer A; Hunter AK; Pabst T; Wang WK
    J Chromatogr A; 2017 Mar; 1488():57-67. PubMed ID: 28159365
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Therapeutic Antibody Engineering To Improve Viscosity and Phase Separation Guided by Crystal Structure.
    Chow CK; Allan BW; Chai Q; Atwell S; Lu J
    Mol Pharm; 2016 Mar; 13(3):915-23. PubMed ID: 26849155
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Orthogonal Techniques to Study the Effect of pH, Sucrose, and Arginine Salts on Monoclonal Antibody Physical Stability and Aggregation During Long-Term Storage.
    Svilenov HL; Kulakova A; Zalar M; Golovanov AP; Harris P; Winter G
    J Pharm Sci; 2020 Jan; 109(1):584-594. PubMed ID: 31689429
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of arginine glutamate on the stability of monoclonal antibodies in solution.
    Kheddo P; Tracka M; Armer J; Dearman RJ; Uddin S; van der Walle CF; Golovanov AP
    Int J Pharm; 2014 Oct; 473(1-2):126-33. PubMed ID: 24992318
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Process optimization and protein engineering mitigated manufacturing challenges of a monoclonal antibody with liquid-liquid phase separation issue by disrupting inter-molecule electrostatic interactions.
    Du Q; Damschroder M; Pabst TM; Hunter AK; Wang WK; Luo H
    MAbs; 2019; 11(4):789-802. PubMed ID: 30913985
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pharmaceutical Perspective on Opalescence and Liquid-Liquid Phase Separation in Protein Solutions.
    Raut AS; Kalonia DS
    Mol Pharm; 2016 May; 13(5):1431-44. PubMed ID: 27017836
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of Arginine Salts on the Thermal Stability and Aggregation Kinetics of Monoclonal Antibody: Dominant Role of Anions.
    Zhang J; Frey V; Corcoran M; Zhang-van Enk J; Subramony JA
    Mol Pharm; 2016 Oct; 13(10):3362-3369. PubMed ID: 27541006
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Resolving Liquid-Liquid Phase Separation for a Peptide Fused Monoclonal Antibody by Formulation Optimization.
    Qi W; Alekseychyk L; Nuanmanee N; Temel DB; Jann V; Treuheit M; Razinkov V
    J Pharm Sci; 2021 Feb; 110(2):738-745. PubMed ID: 32961238
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phase separation of an IgG1 antibody solution under a low ionic strength condition.
    Nishi H; Miyajima M; Nakagami H; Noda M; Uchiyama S; Fukui K
    Pharm Res; 2010 Jul; 27(7):1348-60. PubMed ID: 20401522
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conformational Changes and Drivers of Monoclonal Antibody Liquid-Liquid Phase Separation.
    Larson NR; Wei Y; Cruz TA; Esfandiary R; Kalonia CK; Forrest ML; Middaugh CR
    J Pharm Sci; 2023 Mar; 112(3):680-690. PubMed ID: 36306862
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Opalescence in monoclonal antibody solutions and its correlation with intermolecular interactions in dilute and concentrated solutions.
    Raut AS; Kalonia DS
    J Pharm Sci; 2015 Apr; 104(4):1263-74. PubMed ID: 25556561
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative evaluation of colloidal stability of antibody solutions using PEG-induced liquid-liquid phase separation.
    Wang Y; Latypov RF; Lomakin A; Meyer JA; Kerwin BA; Vunnum S; Benedek GB
    Mol Pharm; 2014 May; 11(5):1391-402. PubMed ID: 24679215
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Profiling formulated monoclonal antibodies by (1)H NMR spectroscopy.
    Poppe L; Jordan JB; Lawson K; Jerums M; Apostol I; Schnier PD
    Anal Chem; 2013 Oct; 85(20):9623-9. PubMed ID: 24006877
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Suppression of Electrostatic Mediated Antibody Liquid-Liquid Phase Separation by Charged and Noncharged Preferentially Excluded Excipients.
    Banks DD; Cordia JF
    Mol Pharm; 2021 Mar; 18(3):1285-1292. PubMed ID: 33555888
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of Excipients on Liquid-Liquid Phase Separation and Aggregation in Dual Variable Domain Immunoglobulin Protein Solutions.
    Raut AS; Kalonia DS
    Mol Pharm; 2016 Mar; 13(3):774-83. PubMed ID: 26756795
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.