These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. CaMKII autophosphorylation is the only enzymatic event required for synaptic memory. Chen X; Cai Q; Zhou J; Pleasure SJ; Schulman H; Zhang M; Nicoll RA Proc Natl Acad Sci U S A; 2024 Jun; 121(26):e2402783121. PubMed ID: 38889145 [TBL] [Abstract][Full Text] [Related]
8. Autonomous CaMKII mediates both LTP and LTD using a mechanism for differential substrate site selection. Coultrap SJ; Freund RK; O'Leary H; Sanderson JL; Roche KW; Dell'Acqua ML; Bayer KU Cell Rep; 2014 Feb; 6(3):431-7. PubMed ID: 24485660 [TBL] [Abstract][Full Text] [Related]
9. CaMKII regulates the depalmitoylation and synaptic removal of the scaffold protein AKAP79/150 to mediate structural long-term depression. Woolfrey KM; O'Leary H; Goodell DJ; Robertson HR; Horne EA; Coultrap SJ; Dell'Acqua ML; Bayer KU J Biol Chem; 2018 Feb; 293(5):1551-1567. PubMed ID: 29196604 [TBL] [Abstract][Full Text] [Related]
10. Nucleotides and phosphorylation bi-directionally modulate Ca2+/calmodulin-dependent protein kinase II (CaMKII) binding to the N-methyl-D-aspartate (NMDA) receptor subunit GluN2B. O'Leary H; Liu WH; Rorabaugh JM; Coultrap SJ; Bayer KU J Biol Chem; 2011 Sep; 286(36):31272-81. PubMed ID: 21768120 [TBL] [Abstract][Full Text] [Related]
12. CaMKII binding to GluN2B is differentially affected by macromolecular crowding reagents. Goodell DJ; Eliseeva TA; Coultrap SJ; Bayer KU PLoS One; 2014; 9(5):e96522. PubMed ID: 24796865 [TBL] [Abstract][Full Text] [Related]
13. CaMKII regulation in information processing and storage. Coultrap SJ; Bayer KU Trends Neurosci; 2012 Oct; 35(10):607-18. PubMed ID: 22717267 [TBL] [Abstract][Full Text] [Related]
14. Modelling the dynamics of CaMKII-NMDAR complex related to memory formation in synapses: the possible roles of threonine 286 autophosphorylation of CaMKII in long term potentiation. He Y; Kulasiri D; Samarasinghe S J Theor Biol; 2015 Jan; 365():403-19. PubMed ID: 25446714 [TBL] [Abstract][Full Text] [Related]
15. Differential stimulus-dependent synaptic recruitment of CaMKIIα by intracellular determinants of GluN2B. She K; Rose JK; Craig AM Mol Cell Neurosci; 2012 Nov; 51(3-4):68-78. PubMed ID: 22902837 [TBL] [Abstract][Full Text] [Related]
16. On the mechanism of synaptic depression induced by CaMKIIN, an endogenous inhibitor of CaMKII. Gouet C; Aburto B; Vergara C; Sanhueza M PLoS One; 2012; 7(11):e49293. PubMed ID: 23145145 [TBL] [Abstract][Full Text] [Related]
17. A Modeling and Analysis Study Reveals That CaMKII in Synaptic Plasticity Is a Dominant Affecter in CaM Systems in a T286 Phosphorylation-Dependent Manner. Stevens-Bullmore H; Kulasiri D; Samarasinghe S Molecules; 2022 Sep; 27(18):. PubMed ID: 36144710 [TBL] [Abstract][Full Text] [Related]
18. Role of inhibitory autophosphorylation of calcium/calmodulin-dependent kinase II (αCAMKII) in persistent (>24 h) hippocampal LTP and in LTD facilitated by novel object-place learning and recognition in mice. Goh JJ; Manahan-Vaughan D Behav Brain Res; 2015 May; 285():79-88. PubMed ID: 24480420 [TBL] [Abstract][Full Text] [Related]
19. Altered GluN2B NMDA receptor function and synaptic plasticity during early pathology in the PS2APP mouse model of Alzheimer's disease. Hanson JE; Pare JF; Deng L; Smith Y; Zhou Q Neurobiol Dis; 2015 Feb; 74():254-62. PubMed ID: 25484285 [TBL] [Abstract][Full Text] [Related]
20. GluN2A and GluN2B subunit-containing NMDA receptors in hippocampal plasticity. Shipton OA; Paulsen O Philos Trans R Soc Lond B Biol Sci; 2014 Jan; 369(1633):20130163. PubMed ID: 24298164 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]