BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 28615035)

  • 1. Unexpected consequences: exon skipping caused by CRISPR-generated mutations.
    Sharpe JJ; Cooper TA
    Genome Biol; 2017 Jun; 18(1):109. PubMed ID: 28615035
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CRISPR/Cas9-mediated genome editing induces exon skipping by complete or stochastic altering splicing in the migratory locust.
    Chen D; Tang JX; Li B; Hou L; Wang X; Kang L
    BMC Biotechnol; 2018 Sep; 18(1):60. PubMed ID: 30253761
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unexpected extra exon skipping in the DYSF gene during restoring the reading frame by CRISPR/Cas9.
    Levchenko O; Panchuk I; Kochergin-Nikitsky K; Petrova I; Nagieva S; Pilkin M; Yakovlev I; Smirnikhina S; Deev R; Lavrov A
    Biosystems; 2024 Jan; 235():105072. PubMed ID: 37944631
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrate CRISPR/Cas9 for protein expression of HLA-B*38:68Q via precise gene editing.
    Yin Y; Reed EF; Zhang Q
    Sci Rep; 2019 May; 9(1):8067. PubMed ID: 31147565
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel human muscle cell model of Duchenne muscular dystrophy created by CRISPR/Cas9 and evaluation of antisense-mediated exon skipping.
    Shimo T; Hosoki K; Nakatsuji Y; Yokota T; Obika S
    J Hum Genet; 2018 Mar; 63(3):365-375. PubMed ID: 29339778
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CRISPR-induced exon skipping is dependent on premature termination codon mutations.
    Sui T; Song Y; Liu Z; Chen M; Deng J; Xu Y; Lai L; Li Z
    Genome Biol; 2018 Oct; 19(1):164. PubMed ID: 30333044
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An update on using CRISPR/Cas9 in the one-cell stage mouse embryo for generating complex mutant alleles.
    Kueh AJ; Pal M; Tai L; Liao Y; Smyth GK; Shi W; Herold MJ
    Cell Death Differ; 2017 Oct; 24(10):1821-1822. PubMed ID: 28753205
    [No Abstract]   [Full Text] [Related]  

  • 8. CRISPR/Cas9 induces exon skipping that facilitates development of fragrant rice.
    Tang Y; Abdelrahman M; Li J; Wang F; Ji Z; Qi H; Wang C; Zhao K
    Plant Biotechnol J; 2021 Apr; 19(4):642-644. PubMed ID: 33217139
    [No Abstract]   [Full Text] [Related]  

  • 9. Genes adapt to outsmart gene-targeting strategies in mutant mouse strains by skipping exons to reinitiate transcription and translation.
    Hosur V; Low BE; Li D; Stafford GA; Kohar V; Shultz LD; Wiles MV
    Genome Biol; 2020 Jul; 21(1):168. PubMed ID: 32646486
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient CRISPR-Cas9-mediated generation of knockin human pluripotent stem cells lacking undesired mutations at the targeted locus.
    Merkle FT; Neuhausser WM; Santos D; Valen E; Gagnon JA; Maas K; Sandoe J; Schier AF; Eggan K
    Cell Rep; 2015 May; 11(6):875-883. PubMed ID: 25937281
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An undergraduate laboratory class using CRISPR/Cas9 technology to mutate drosophila genes.
    Adame V; Chapapas H; Cisneros M; Deaton C; Deichmann S; Gadek C; Lovato TL; Chechenova MB; Guerin P; Cripps RM
    Biochem Mol Biol Educ; 2016 May; 44(3):263-75. PubMed ID: 27009801
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advances in therapeutic CRISPR/Cas9 genome editing.
    Savić N; Schwank G
    Transl Res; 2016 Feb; 168():15-21. PubMed ID: 26470680
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of genomic sites for CRISPR/Cas9-based genome editing in the Vitis vinifera genome.
    Wang Y; Liu X; Ren C; Zhong GY; Yang L; Li S; Liang Z
    BMC Plant Biol; 2016 Apr; 16():96. PubMed ID: 27098585
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation.
    Zhang H; Zhang J; Wei P; Zhang B; Gou F; Feng Z; Mao Y; Yang L; Zhang H; Xu N; Zhu JK
    Plant Biotechnol J; 2014 Aug; 12(6):797-807. PubMed ID: 24854982
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New applications of CRISPR/Cas9 system on mutant DNA detection.
    Jia C; Huai C; Ding J; Hu L; Su B; Chen H; Lu D
    Gene; 2018 Jan; 641():55-62. PubMed ID: 29031777
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CRISPR/Cas9 Platforms for Genome Editing in Plants: Developments and Applications.
    Ma X; Zhu Q; Chen Y; Liu YG
    Mol Plant; 2016 Jul; 9(7):961-74. PubMed ID: 27108381
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discovery of cancer drug targets by CRISPR-Cas9 screening of protein domains.
    Shi J; Wang E; Milazzo JP; Wang Z; Kinney JB; Vakoc CR
    Nat Biotechnol; 2015 Jun; 33(6):661-7. PubMed ID: 25961408
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CRISPR-mediated targeting of HER2 inhibits cell proliferation through a dominant negative mutation.
    Wang H; Sun W
    Cancer Lett; 2017 Jan; 385():137-143. PubMed ID: 27815036
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CRISPR/Cas9-Based Genome Editing in Plants.
    Zhang Y; Ma X; Xie X; Liu YG
    Prog Mol Biol Transl Sci; 2017; 149():133-150. PubMed ID: 28712494
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CRISPR-Cas9-mediated insertion of a short artificial intron for the generation of conditional alleles in mice.
    Cassidy A; Pelletier S
    STAR Protoc; 2023 Mar; 4(1):102116. PubMed ID: 36853660
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.