These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

439 related articles for article (PubMed ID: 28615073)

  • 1. CRISPR/Cas9-mediated genome editing induces exon skipping by alternative splicing or exon deletion.
    Mou H; Smith JL; Peng L; Yin H; Moore J; Zhang XO; Song CQ; Sheel A; Wu Q; Ozata DM; Li Y; Anderson DG; Emerson CP; Sontheimer EJ; Moore MJ; Weng Z; Xue W
    Genome Biol; 2017 Jun; 18(1):108. PubMed ID: 28615073
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CRISPR-Cas9 gene editing causes alternative splicing of the targeting mRNA.
    Zhang Q; Fu Y; Thakur C; Bi Z; Wadgaonkar P; Qiu Y; Xu L; Rice M; Zhang W; Almutairy B; Chen F
    Biochem Biophys Res Commun; 2020 Jul; 528(1):54-61. PubMed ID: 32460957
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRISPR/Cas9-mediated genome editing induces exon skipping by complete or stochastic altering splicing in the migratory locust.
    Chen D; Tang JX; Li B; Hou L; Wang X; Kang L
    BMC Biotechnol; 2018 Sep; 18(1):60. PubMed ID: 30253761
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unexpected extra exon skipping in the DYSF gene during restoring the reading frame by CRISPR/Cas9.
    Levchenko O; Panchuk I; Kochergin-Nikitsky K; Petrova I; Nagieva S; Pilkin M; Yakovlev I; Smirnikhina S; Deev R; Lavrov A
    Biosystems; 2024 Jan; 235():105072. PubMed ID: 37944631
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Machine learning based CRISPR gRNA design for therapeutic exon skipping.
    Louie W; Shen MW; Tahiry Z; Zhang S; Worstell D; Cassa CA; Sherwood RI; Gifford DK
    PLoS Comput Biol; 2021 Jan; 17(1):e1008605. PubMed ID: 33417623
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Understanding and repurposing CRISPR-mediated alternative splicing.
    Smith JL; Mou H; Xue W
    Genome Biol; 2018 Nov; 19(1):184. PubMed ID: 30400804
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Restoration of Dystrophin Protein Expression by Exon Skipping Utilizing CRISPR-Cas9 in Myoblasts Derived from DMD Patient iPS Cells.
    Ifuku M; Iwabuchi KA; Tanaka M; Lung MSY; Hotta A
    Methods Mol Biol; 2018; 1828():191-217. PubMed ID: 30171543
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extracellular nanovesicles for packaging of CRISPR-Cas9 protein and sgRNA to induce therapeutic exon skipping.
    Gee P; Lung MSY; Okuzaki Y; Sasakawa N; Iguchi T; Makita Y; Hozumi H; Miura Y; Yang LF; Iwasaki M; Wang XH; Waller MA; Shirai N; Abe YO; Fujita Y; Watanabe K; Kagita A; Iwabuchi KA; Yasuda M; Xu H; Noda T; Komano J; Sakurai H; Inukai N; Hotta A
    Nat Commun; 2020 Mar; 11(1):1334. PubMed ID: 32170079
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Correction of Three Prominent Mutations in Mouse and Human Models of Duchenne Muscular Dystrophy by Single-Cut Genome Editing.
    Min YL; Chemello F; Li H; Rodriguez-Caycedo C; Sanchez-Ortiz E; Mireault AA; McAnally JR; Shelton JM; Zhang Y; Bassel-Duby R; Olson EN
    Mol Ther; 2020 Sep; 28(9):2044-2055. PubMed ID: 32892813
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SliceIt: A genome-wide resource and visualization tool to design CRISPR/Cas9 screens for editing protein-RNA interaction sites in the human genome.
    Vemuri S; Srivastava R; Mir Q; Hashemikhabir S; Dong XC; Janga SC
    Methods; 2020 Jun; 178():104-113. PubMed ID: 31494246
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CRISPR-induced exon skipping of β-catenin reveals tumorigenic mutants driving distinct subtypes of liver cancer.
    Mou H; Eskiocak O; Özler KA; Gorman M; Yue J; Jin Y; Wang Z; Gao Y; Janowitz T; Meyer HV; Yu T; Wilkinson JE; Kucukural A; Ozata DM; Beyaz S
    J Pathol; 2023 Apr; 259(4):415-427. PubMed ID: 36641763
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Precise genomic deletions using paired prime editing.
    Choi J; Chen W; Suiter CC; Lee C; Chardon FM; Yang W; Leith A; Daza RM; Martin B; Shendure J
    Nat Biotechnol; 2022 Feb; 40(2):218-226. PubMed ID: 34650269
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dual-sgRNA CRISPR/Cas9 knockout of PD-L1 in human U87 glioblastoma tumor cells inhibits proliferation, invasion, and tumor-associated macrophage polarization.
    Fierro J; DiPasquale J; Perez J; Chin B; Chokpapone Y; Tran AM; Holden A; Factoriza C; Sivagnanakumar N; Aguilar R; Mazal S; Lopez M; Dou H
    Sci Rep; 2022 Feb; 12(1):2417. PubMed ID: 35165339
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adenine base-editing-mediated exon skipping induces gene knockout in cultured pig cells.
    Zhu XX; Pan JS; Lin T; Yang YC; Huang QY; Yang SP; Qu ZX; Lin ZS; Wen JC; Yan AF; Feng J; Liu L; Zhang XL; Lu JH; Tang DS
    Biotechnol Lett; 2022 Jan; 44(1):59-76. PubMed ID: 34997407
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CRISPR/Cas9-generated mouse model of Duchenne muscular dystrophy recapitulating a newly identified large 430 kb deletion in the human
    Egorova TV; Zotova ED; Reshetov DA; Polikarpova AV; Vassilieva SG; Vlodavets DV; Gavrilov AA; Ulianov SV; Buchman VL; Deykin AV
    Dis Model Mech; 2019 Apr; 12(4):. PubMed ID: 31028078
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation of NanoMEDIC Extracellular Vesicles to Deliver CRISPR-Cas9 Ribonucleoproteins for Genomic Exon Skipping.
    Watanabe K; Gee P; Hotta A
    Methods Mol Biol; 2023; 2587():427-453. PubMed ID: 36401042
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generation of TGFBI knockout ABCG2+/ABCB5+ double-positive limbal epithelial stem cells by CRISPR/Cas9-mediated genome editing.
    Kim EK; Kim S; Maeng YS
    PLoS One; 2019; 14(2):e0211864. PubMed ID: 30753226
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Splice donor site sgRNAs enhance CRISPR/Cas9-mediated knockout efficiency.
    García-Tuñón I; Alonso-Pérez V; Vuelta E; Pérez-Ramos S; Herrero M; Méndez L; Hernández-Sánchez JM; Martín-Izquierdo M; Saldaña R; Sevilla J; Sánchez-Guijo F; Hernández-Rivas JM; Sánchez-Martín M
    PLoS One; 2019; 14(5):e0216674. PubMed ID: 31071190
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Correction of diverse muscular dystrophy mutations in human engineered heart muscle by single-site genome editing.
    Long C; Li H; Tiburcy M; Rodriguez-Caycedo C; Kyrychenko V; Zhou H; Zhang Y; Min YL; Shelton JM; Mammen PPA; Liaw NY; Zimmermann WH; Bassel-Duby R; Schneider JW; Olson EN
    Sci Adv; 2018 Jan; 4(1):eaap9004. PubMed ID: 29404407
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Precision genome editing in the CRISPR era.
    Salsman J; Dellaire G
    Biochem Cell Biol; 2017 Apr; 95(2):187-201. PubMed ID: 28177771
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.