These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 28615335)

  • 1. Wakefulness suppresses retinal wave-related neural activity in visual cortex.
    Mukherjee D; Yonk AJ; Sokoloff G; Blumberg MS
    J Neurophysiol; 2017 Aug; 118(2):1190-1197. PubMed ID: 28615335
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Retinal waves trigger spindle bursts in the neonatal rat visual cortex.
    Hanganu IL; Ben-Ari Y; Khazipov R
    J Neurosci; 2006 Jun; 26(25):6728-36. PubMed ID: 16793880
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spontaneous Retinal Waves Can Generate Long-Range Horizontal Connectivity in Visual Cortex.
    Kim J; Song M; Jang J; Paik SB
    J Neurosci; 2020 Aug; 40(34):6584-6599. PubMed ID: 32680939
    [TBL] [Abstract][Full Text] [Related]  

  • 4. "Slow activity transients" in infant rat visual cortex: a spreading synchronous oscillation patterned by retinal waves.
    Colonnese MT; Khazipov R
    J Neurosci; 2010 Mar; 30(12):4325-37. PubMed ID: 20335468
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sleep enhances plasticity in the developing visual cortex.
    Frank MG; Issa NP; Stryker MP
    Neuron; 2001 Apr; 30(1):275-87. PubMed ID: 11343661
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Burst and tonic response modes in thalamic neurons during sleep and wakefulness.
    Weyand TG; Boudreaux M; Guido W
    J Neurophysiol; 2001 Mar; 85(3):1107-18. PubMed ID: 11247981
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visual development. From darkness into light.
    Thompson I
    Curr Biol; 1994 May; 4(5):458-61. PubMed ID: 7922365
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Feedback inhibition and throughput properties of an integrate-and-fire-or-burst network model of retinogeniculate transmission.
    Huertas MA; Groff JR; Smith GD
    J Comput Neurosci; 2005 Oct; 19(2):147-80. PubMed ID: 16133817
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Eye-specific retinogeniculate segregation proceeds normally following disruption of patterned spontaneous retinal activity.
    Speer CM; Sun C; Liets LC; Stafford BK; Chapman B; Cheng HJ
    Neural Dev; 2014 Nov; 9():25. PubMed ID: 25377639
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photic-induced sensitization: eye-specific neural plasticity and effect of behavioral state.
    Manning KA; Galganski LA; Uhlrich DJ
    Neuroscience; 2007 May; 146(3):1413-24. PubMed ID: 17391857
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neuronal Firing Rate Homeostasis Is Inhibited by Sleep and Promoted by Wake.
    Hengen KB; Torrado Pacheco A; McGregor JN; Van Hooser SD; Turrigiano GG
    Cell; 2016 Mar; 165(1):180-191. PubMed ID: 26997481
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neocortical activation of the hippocampus during sleep in infant rats.
    Mohns EJ; Blumberg MS
    J Neurosci; 2010 Mar; 30(9):3438-49. PubMed ID: 20203203
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Retinal influences induce bidirectional changes in the kinetics of N-methyl-D-aspartate receptor-mediated responses in striate cortex cells during postnatal development.
    Olavarria JF; van Brederode JF; Spain WJ
    Neuroscience; 2007 Sep; 148(3):683-99. PubMed ID: 17706364
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Case of the Disappearing Spindle Burst.
    Tiriac A; Blumberg MS
    Neural Plast; 2016; 2016():8037321. PubMed ID: 27119028
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An excitatory cortical feedback loop gates retinal wave transmission in rodent thalamus.
    Murata Y; Colonnese MT
    Elife; 2016 Oct; 5():. PubMed ID: 27725086
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid developmental emergence of stable depolarization during wakefulness by inhibitory balancing of cortical network excitability.
    Colonnese MT
    J Neurosci; 2014 Apr; 34(16):5477-85. PubMed ID: 24741038
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intra- and interregional cortical interactions related to sharp-wave ripples and dentate spikes.
    Headley DB; Kanta V; Paré D
    J Neurophysiol; 2017 Feb; 117(2):556-565. PubMed ID: 27832604
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Early retinal activity and visual circuit development.
    Del Rio T; Feller MB
    Neuron; 2006 Oct; 52(2):221-2. PubMed ID: 17046683
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Visual Cortex Gains Independence from Peripheral Drive before Eye Opening.
    Gribizis A; Ge X; Daigle TL; Ackman JB; Zeng H; Lee D; Crair MC
    Neuron; 2019 Nov; 104(4):711-723.e3. PubMed ID: 31561919
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A chronic implant to record electroretinogram, visual evoked potentials and oscillatory potentials in awake, freely moving rats for pharmacological studies.
    Guarino I; Loizzo S; Lopez L; Fadda A; Loizzo A
    Neural Plast; 2004; 11(3-4):241-50. PubMed ID: 15656271
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.