These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 28615505)

  • 1. Topological features of a gene co-expression network predict patterns of natural diversity in environmental response.
    Des Marais DL; Guerrero RF; Lasky JR; Scarpino SV
    Proc Biol Sci; 2017 Jun; 284(1856):. PubMed ID: 28615505
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome-scale cold stress response regulatory networks in ten Arabidopsis thaliana ecotypes.
    Barah P; Jayavelu ND; Rasmussen S; Nielsen HB; Mundy J; Bones AM
    BMC Genomics; 2013 Oct; 14():722. PubMed ID: 24148294
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Natural variation and genetic constraints on drought tolerance.
    Juenger TE
    Curr Opin Plant Biol; 2013 Jun; 16(3):274-81. PubMed ID: 23462639
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Natural variation in abiotic stress responsive gene expression and local adaptation to climate in Arabidopsis thaliana.
    Lasky JR; Des Marais DL; Lowry DB; Povolotskaya I; McKay JK; Richards JH; Keitt TH; Juenger TE
    Mol Biol Evol; 2014 Sep; 31(9):2283-96. PubMed ID: 24850899
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative transcriptome meta-analysis of Arabidopsis thaliana under drought and cold stress.
    Sharma R; Singh G; Bhattacharya S; Singh A
    PLoS One; 2018; 13(9):e0203266. PubMed ID: 30192796
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Overexpression of pigeonpea stress-induced cold and drought regulatory gene (CcCDR) confers drought, salt, and cold tolerance in Arabidopsis.
    Tamirisa S; Vudem DR; Khareedu VR
    J Exp Bot; 2014 Sep; 65(17):4769-81. PubMed ID: 24868035
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Can metabolic tightening and expansion of co-expression network play a role in stress response and tolerance?
    Fait A; Batushansky A; Shrestha V; Yobi A; Angelovici R
    Plant Sci; 2020 Apr; 293():110409. PubMed ID: 32081259
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A stress inducible SUMO conjugating enzyme gene (SaSce9) from a grass halophyte Spartina alterniflora enhances salinity and drought stress tolerance in Arabidopsis.
    Karan R; Subudhi PK
    BMC Plant Biol; 2012 Oct; 12():187. PubMed ID: 23051937
    [TBL] [Abstract][Full Text] [Related]  

  • 9. GsZFP1, a new Cys2/His2-type zinc-finger protein, is a positive regulator of plant tolerance to cold and drought stress.
    Luo X; Bai X; Zhu D; Li Y; Ji W; Cai H; Wu J; Liu B; Zhu Y
    Planta; 2012 Jun; 235(6):1141-55. PubMed ID: 22160567
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A gene-phenotype network based on genetic variability for drought responses reveals key physiological processes in controlled and natural environments.
    Rengel D; Arribat S; Maury P; Martin-Magniette ML; Hourlier T; Laporte M; Varès D; Carrère S; Grieu P; Balzergue S; Gouzy J; Vincourt P; Langlade NB
    PLoS One; 2012; 7(10):e45249. PubMed ID: 23056196
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel Ap2/ERF transcription factor from Stipa purpurea leads to enhanced drought tolerance in Arabidopsis thaliana.
    Yang Y; Dong C; Li X; Du J; Qian M; Sun X; Yang Y
    Plant Cell Rep; 2016 Nov; 35(11):2227-2239. PubMed ID: 27443644
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alteration of Arabidopsis SLAC1 promoter and its association with natural variation in drought tolerance.
    Imai H; Noda Y; Tamaoki M
    Plant Signal Behav; 2015; 10(3):e989761. PubMed ID: 25695335
    [TBL] [Abstract][Full Text] [Related]  

  • 13. VaCPK20, a calcium-dependent protein kinase gene of wild grapevine Vitis amurensis Rupr., mediates cold and drought stress tolerance.
    Dubrovina AS; Kiselev KV; Khristenko VS; Aleynova OA
    J Plant Physiol; 2015 Aug; 185():1-12. PubMed ID: 26264965
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Overexpression of MuHSP70 gene from Macrotyloma uniflorum confers multiple abiotic stress tolerance in transgenic Arabidopsis thaliana.
    Masand S; Yadav SK
    Mol Biol Rep; 2016 Feb; 43(2):53-64. PubMed ID: 26694324
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Putative cold acclimation pathways in Arabidopsis thaliana identified by a combined analysis of mRNA co-expression patterns, promoter motifs and transcription factors.
    Chawade A; Bräutigam M; Lindlöf A; Olsson O; Olsson B
    BMC Genomics; 2007 Sep; 8():304. PubMed ID: 17764576
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The NAC-type transcription factor CaNAC46 regulates the salt and drought tolerance of transgenic Arabidopsis thaliana.
    Ma J; Wang LY; Dai JX; Wang Y; Lin D
    BMC Plant Biol; 2021 Jan; 21(1):11. PubMed ID: 33407148
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Kinase CIPK11 Functions as a Negative Regulator in Drought Stress Response in Arabidopsis.
    Ma Y; Cao J; Chen Q; He J; Liu Z; Wang J; Li X; Yang Y
    Int J Mol Sci; 2019 May; 20(10):. PubMed ID: 31100788
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multifaceted role of cycling DOF factor 3 (CDF3) in the regulation of flowering time and abiotic stress responses in Arabidopsis.
    Corrales AR; Carrillo L; Lasierra P; Nebauer SG; Dominguez-Figueroa J; Renau-Morata B; Pollmann S; Granell A; Molina RV; Vicente-Carbajosa J; Medina J
    Plant Cell Environ; 2017 May; 40(5):748-764. PubMed ID: 28044345
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Overexpression of
    Huque AKMM; So W; Noh M; You MK; Shin JS
    Int J Mol Sci; 2021 Mar; 22(6):. PubMed ID: 33805821
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cross-species multiple environmental stress responses: An integrated approach to identify candidate genes for multiple stress tolerance in sorghum (Sorghum bicolor (L.) Moench) and related model species.
    Woldesemayat AA; Modise DM; Gemeildien J; Ndimba BK; Christoffels A
    PLoS One; 2018; 13(3):e0192678. PubMed ID: 29590108
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.