These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 28615505)
41. Extensive cis-regulatory variation robust to environmental perturbation in Arabidopsis. Cubillos FA; Stegle O; Grondin C; Canut M; Tisné S; Gy I; Loudet O Plant Cell; 2014 Nov; 26(11):4298-310. PubMed ID: 25428981 [TBL] [Abstract][Full Text] [Related]
42. Network Biology Analyses and Dynamic Modeling of Gene Regulatory Networks under Drought Stress Reveal Major Transcriptional Regulators in Kumar N; Mishra BK; Liu J; Mohan B; Thingujam D; Pajerowska-Mukhtar KM; Mukhtar MS Int J Mol Sci; 2023 Apr; 24(8):. PubMed ID: 37108512 [TBL] [Abstract][Full Text] [Related]
43. Genome-wide characterization of the CBF/DREB1 gene family in Brassica rapa. Lee SC; Lim MH; Yu JG; Park BS; Yang TJ Plant Physiol Biochem; 2012 Dec; 61():142-52. PubMed ID: 23148914 [TBL] [Abstract][Full Text] [Related]
44. Drought-responsive WRKY transcription factor genes TaWRKY1 and TaWRKY33 from wheat confer drought and/or heat resistance in Arabidopsis. He GH; Xu JY; Wang YX; Liu JM; Li PS; Chen M; Ma YZ; Xu ZS BMC Plant Biol; 2016 May; 16(1):116. PubMed ID: 27215938 [TBL] [Abstract][Full Text] [Related]
45. Overexpression of the trehalase gene AtTRE1 leads to increased drought stress tolerance in Arabidopsis and is involved in abscisic acid-induced stomatal closure. Van Houtte H; Vandesteene L; López-Galvis L; Lemmens L; Kissel E; Carpentier S; Feil R; Avonce N; Beeckman T; Lunn JE; Van Dijck P Plant Physiol; 2013 Mar; 161(3):1158-71. PubMed ID: 23341362 [TBL] [Abstract][Full Text] [Related]
46. Common and distinct organ and stress responsive transcriptomic patterns in Oryza sativa and Arabidopsis thaliana. Narsai R; Castleden I; Whelan J BMC Plant Biol; 2010 Nov; 10():262. PubMed ID: 21106056 [TBL] [Abstract][Full Text] [Related]
47. Plant drought tolerance provided through genome editing of the trehalase gene. Nuñez-Muñoz L; Vargas-Hernández B; Hinojosa-Moya J; Ruiz-Medrano R; Xoconostle-Cázares B Plant Signal Behav; 2021 Apr; 16(4):1877005. PubMed ID: 33570447 [TBL] [Abstract][Full Text] [Related]
48. The Footprint of Polygenic Adaptation on Stress-Responsive Cis-Regulatory Divergence in the Arabidopsis Genus. He F; Arce AL; Schmitz G; Koornneef M; Novikova P; Beyer A; de Meaux J Mol Biol Evol; 2016 Aug; 33(8):2088-101. PubMed ID: 27189540 [TBL] [Abstract][Full Text] [Related]
49. A Glycine soja 14-3-3 protein GsGF14o participates in stomatal and root hair development and drought tolerance in Arabidopsis thaliana. Sun X; Luo X; Sun M; Chen C; Ding X; Wang X; Yang S; Yu Q; Jia B; Ji W; Cai H; Zhu Y Plant Cell Physiol; 2014 Jan; 55(1):99-118. PubMed ID: 24272249 [TBL] [Abstract][Full Text] [Related]
51. The ARGOS-LIKE genes of Arabidopsis and tobacco as targets for improving plant productivity and stress tolerance. Kuluev B; Mikhaylova E; Ermoshin A; Veselova S; Tugbaeva A; Gumerova G; Gainullina K; Zaikina E J Plant Physiol; 2019 Nov; 242():153033. PubMed ID: 31472448 [TBL] [Abstract][Full Text] [Related]
52. Constitutive overexpression of the calcium sensor CBL5 confers osmotic or drought stress tolerance in Arabidopsis. Cheong YH; Sung SJ; Kim BG; Pandey GK; Cho JS; Kim KN; Luan S Mol Cells; 2010 Feb; 29(2):159-65. PubMed ID: 20077023 [TBL] [Abstract][Full Text] [Related]
53. Pleiotropy of FRIGIDA enhances the potential for multivariate adaptation. Lovell JT; Juenger TE; Michaels SD; Lasky JR; Platt A; Richards JH; Yu X; Easlon HM; Sen S; McKay JK Proc Biol Sci; 2013 Jul; 280(1763):20131043. PubMed ID: 23698015 [TBL] [Abstract][Full Text] [Related]
54. Transcriptional profiling of Arabidopsis heat shock proteins and transcription factors reveals extensive overlap between heat and non-heat stress response pathways. Swindell WR; Huebner M; Weber AP BMC Genomics; 2007 May; 8():125. PubMed ID: 17519032 [TBL] [Abstract][Full Text] [Related]
55. Overexpression of FTL1/DDF1, an AP2 transcription factor, enhances tolerance to cold, drought, and heat stresses in Arabidopsis thaliana. Kang HG; Kim J; Kim B; Jeong H; Choi SH; Kim EK; Lee HY; Lim PO Plant Sci; 2011 Apr; 180(4):634-41. PubMed ID: 21421412 [TBL] [Abstract][Full Text] [Related]
56. Deciphering the molecular bases for drought tolerance in Arabidopsis autotetraploids. del Pozo JC; Ramirez-Parra E Plant Cell Environ; 2014 Dec; 37(12):2722-37. PubMed ID: 24716850 [TBL] [Abstract][Full Text] [Related]
57. Arabidopsis F-box protein At1g08710 interacts with transcriptional protein ADA2b and imparts drought stress tolerance by negatively regulating seedling growth. Rao V; Virupapuram V Biochem Biophys Res Commun; 2021 Jan; 536():45-51. PubMed ID: 33360542 [TBL] [Abstract][Full Text] [Related]
58. New insights on the regulatory network of drought-responsive key genes in Arabidopsis thaliana. Arjmand MP; Lahiji HS; Golfazani MM; Biglouei MH Genetica; 2023 Feb; 151(1):29-45. PubMed ID: 36474134 [TBL] [Abstract][Full Text] [Related]