BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 28615543)

  • 41. Sensory gating functions of the auditory thalamus: Adaptation and modulations through noise-exposure and high-frequency stimulation in rats.
    Zare A; van Zwieten G; Kotz SA; Temel Y; Almasabi F; Schultz BG; Schwartze M; Janssen MLF
    Behav Brain Res; 2023 Jul; 450():114498. PubMed ID: 37201892
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Macrophage Migration Inhibitory Factor Deficiency Causes Prolonged Hearing Loss After Acoustic Overstimulation.
    Kariya S; Okano M; Maeda Y; Hirai H; Higaki T; Noyama Y; Haruna T; Nishihira J; Nishizaki K
    Otol Neurotol; 2015 Jul; 36(6):1103-8. PubMed ID: 25853607
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Evidence for nonreciprocal organization of the mouse auditory thalamocortical-corticothalamic projection systems.
    Llano DA; Sherman SM
    J Comp Neurol; 2008 Mar; 507(2):1209-27. PubMed ID: 18181153
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Sharpening of frequency tuning by inhibition in the thalamic auditory nucleus of the mustached bat.
    Suga N; Zhang Y; Yan J
    J Neurophysiol; 1997 Apr; 77(4):2098-114. PubMed ID: 9114258
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Thalamic activation modulates the responses of neurons in rat primary auditory cortex: an in vivo intracellular recording study.
    Han L; Zhang Y; Lou Y; Xiong Y
    PLoS One; 2012; 7(4):e34837. PubMed ID: 22514672
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A Golgi study of the medial geniculate body in the tree shrew (Tupaia glis).
    Oliver DL
    J Comp Neurol; 1982 Jul; 209(1):1-16. PubMed ID: 7119170
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Reaction of neurons of the medial geniculate body to acoustic stimulation].
    Me'lnichuk AP; Ianovskiĭ ESh
    Fiziol Zh (1978); 1989; 35(6):9-18. PubMed ID: 2558914
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effects of noise-induced hearing loss on parvalbumin and perineuronal net expression in the mouse primary auditory cortex.
    Nguyen A; Khaleel HM; Razak KA
    Hear Res; 2017 Jul; 350():82-90. PubMed ID: 28460252
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Molecular mechanisms of neuronal death in the dorsal lateral geniculate nucleus following visual cortical lesions.
    Repici M; Atzori C; Migheli A; Vercelli A
    Neuroscience; 2003; 117(4):859-67. PubMed ID: 12654338
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effects of lifetime noise exposure on the middle-age human auditory brainstem response, tinnitus and speech-in-noise intelligibility.
    Valderrama JT; Beach EF; Yeend I; Sharma M; Van Dun B; Dillon H
    Hear Res; 2018 Aug; 365():36-48. PubMed ID: 29913342
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Projections to the subcortical forebrain from anatomically defined regions of the medial geniculate body in the rat.
    LeDoux JE; Ruggiero DA; Reis DJ
    J Comp Neurol; 1985 Dec; 242(2):182-213. PubMed ID: 4086664
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Distinct core thalamocortical pathways to central and dorsal primary auditory cortex.
    Read HL; Nauen DW; Escabí MA; Miller LM; Schreiner CE; Winer JA
    Hear Res; 2011 Apr; 274(1-2):95-104. PubMed ID: 21145383
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Presynaptic Neuronal Nicotinic Receptors Differentially Shape Select Inputs to Auditory Thalamus and Are Negatively Impacted by Aging.
    Sottile SY; Hackett TA; Cai R; Ling L; Llano DA; Caspary DM
    J Neurosci; 2017 Nov; 37(47):11377-11389. PubMed ID: 29061702
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Postnatal development of auditory central evoked responses and thalamic cellular properties.
    Venkataraman Y; Bartlett EL
    Dev Neurobiol; 2014 May; 74(5):541-55. PubMed ID: 24214269
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Postnatal exposure to an acoustically enriched environment alters the morphology of neurons in the adult rat auditory system.
    Svobodová Burianová J; Syka J
    Brain Struct Funct; 2020 Sep; 225(7):1979-1995. PubMed ID: 32588120
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Activation of JNK in the inner ear following impulse noise exposure.
    Murai N; Kirkegaard M; Järlebark L; Risling M; Suneson A; Ulfendahl M
    J Neurotrauma; 2008 Jan; 25(1):72-7. PubMed ID: 18355160
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Acoustic overstimulation-induced apoptosis in fibrocytes of the cochlear spiral limbus of mice.
    Cui Y; Sun GW; Yamashita D; Kanzaki S; Matsunaga T; Fujii M; Kaga K; Ogawa K
    Eur Arch Otorhinolaryngol; 2011 Jul; 268(7):973-8. PubMed ID: 21246212
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Variation in acoustic overstimulation changes tinnitus characteristics.
    Kiefer L; Schauen A; Abendroth S; Gaese BH; Nowotny M
    Neuroscience; 2015 Dec; 310():176-87. PubMed ID: 26365609
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Inputs to combination-sensitive neurons in the medial geniculate body of the mustached bat: the missing fundamental.
    Wenstrup JJ; Grose CD
    J Neurosci; 1995 Jun; 15(6):4693-711. PubMed ID: 7540682
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Influence of Acoustic Overstimulation on the Central Auditory System: An Functional Magnetic Resonance Imaging (fMRI) Study.
    Wolak T; Cieśla K; Rusiniak M; Piłka A; Lewandowska M; Pluta A; Skarżyński H; Skarżyński PH
    Med Sci Monit; 2016 Nov; 22():4623-4635. PubMed ID: 27893698
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.