These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 28615646)

  • 1. Hydrogen sulfide stimulates CFTR in Xenopus oocytes by activation of the cAMP/PKA signalling axis.
    Perniss A; Preiss K; Nier M; Althaus M
    Sci Rep; 2017 Jun; 7(1):3517. PubMed ID: 28615646
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of recombinant cardiac cystic fibrosis transmembrane conductance regulator chloride channels by protein kinase C.
    Yamazaki J; Britton F; Collier ML; Horowitz B; Hume JR
    Biophys J; 1999 Apr; 76(4):1972-87. PubMed ID: 10096895
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mouse cystic fibrosis transmembrane conductance regulator forms cAMP-PKA-regulated apical chloride channels in cortical collecting duct.
    Lu M; Dong K; Egan ME; Giebisch GH; Boulpaep EL; Hebert SC
    Proc Natl Acad Sci U S A; 2010 Mar; 107(13):6082-7. PubMed ID: 20231442
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrogen sulfide decreases β-adrenergic agonist-stimulated lung liquid clearance by inhibiting ENaC-mediated transepithelial sodium absorption.
    Agné AM; Baldin JP; Benjamin AR; Orogo-Wenn MC; Wichmann L; Olson KR; Walters DV; Althaus M
    Am J Physiol Regul Integr Comp Physiol; 2015 Apr; 308(7):R636-49. PubMed ID: 25632025
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The cystic fibrosis transmembrane conductance regulator attenuates the endogenous Ca2+ activated Cl- conductance of Xenopus oocytes.
    Kunzelmann K; Mall M; Briel M; Hipper A; Nitschke R; Ricken S; Greger R
    Pflugers Arch; 1997 Dec; 435(1):178-81. PubMed ID: 9359918
    [TBL] [Abstract][Full Text] [Related]  

  • 6. mu-opioid receptor regulates CFTR coexpressed in Xenopus oocytes in a cAMP independent manner.
    Wotta DR; Birnbaum AK; Wilcox GL; Elde R; Law PY
    Brain Res Mol Brain Res; 1997 Feb; 44(1):55-65. PubMed ID: 9030698
    [TBL] [Abstract][Full Text] [Related]  

  • 7. δβγ-ENaC is inhibited by CFTR but stimulated by cAMP in
    Rauh R; Hoerner C; Korbmacher C
    Am J Physiol Lung Cell Mol Physiol; 2017 Feb; 312(2):L277-L287. PubMed ID: 27941075
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ANP and CNP activate CFTR expressed in Xenopus laevis oocytes by direct activation of PKA.
    Stahl K; Stahl M; de Jonge HR; Forrest JN
    J Recept Signal Transduct Res; 2015; 35(5):493-504. PubMed ID: 26016495
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional integrity of the vesicle transporting machinery is required for complete activation of cFTR expressed in xenopus laevis oocytes.
    Weber WM; Segal A; Simaels J; Vankeerberghen A; Cassiman JJ; Van Driessche W
    Pflugers Arch; 2001 Mar; 441(6):850-9. PubMed ID: 11316271
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The CLIC1 chloride channel is regulated by the cystic fibrosis transmembrane conductance regulator when expressed in Xenopus oocytes.
    Edwards JC
    J Membr Biol; 2006; 213(1):39-46. PubMed ID: 17347778
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Capacitance measurements reveal different pathways for the activation of CFTR.
    Weber WM; Cuppens H; Cassiman JJ; Clauss W; Van Driessche W
    Pflugers Arch; 1999 Sep; 438(4):561-9. PubMed ID: 10519152
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CFTR fails to inhibit the epithelial sodium channel ENaC expressed in Xenopus laevis oocytes.
    Nagel G; Barbry P; Chabot H; Brochiero E; Hartung K; Grygorczyk R
    J Physiol; 2005 May; 564(Pt 3):671-82. PubMed ID: 15746174
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aquaporin 3 cloned from Xenopus laevis is regulated by the cystic fibrosis transmembrane conductance regulator.
    Schreiber R; Pavenstädt H; Greger R; Kunzelmann K
    FEBS Lett; 2000 Jun; 475(3):291-5. PubMed ID: 10869574
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The formation of the cAMP/protein kinase A-dependent annexin 2-S100A10 complex with cystic fibrosis conductance regulator protein (CFTR) regulates CFTR channel function.
    Borthwick LA; McGaw J; Conner G; Taylor CJ; Gerke V; Mehta A; Robson L; Muimo R
    Mol Biol Cell; 2007 Sep; 18(9):3388-97. PubMed ID: 17581860
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cl- transport by cystic fibrosis transmembrane conductance regulator (CFTR) contributes to the inhibition of epithelial Na+ channels (ENaCs) in Xenopus oocytes co-expressing CFTR and ENaC.
    Briel M; Greger R; Kunzelmann K
    J Physiol; 1998 May; 508 ( Pt 3)(Pt 3):825-36. PubMed ID: 9518736
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasma membrane protein clusters appear in CFTR-expressing Xenopus laevis oocytes after cAMP stimulation.
    Schillers H; Danker T; Madeja M; Oberleithner H
    J Membr Biol; 2001 Apr; 180(3):205-12. PubMed ID: 11337892
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Different activation mechanisms of cystic fibrosis transmembrane conductance regulator expressed in Xenopus laevis oocytes.
    Webe WM; Segal A; Vankeerberghen A; Cassiman JJ; Van Driessche W
    Comp Biochem Physiol A Mol Integr Physiol; 2001 Oct; 130(3):521-31. PubMed ID: 11913463
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of 8-cpt-cAMP on the epithelial sodium channel expressed in Xenopus oocytes.
    Chraïbi A; Schnizler M; Clauss W; Horisberger JD
    J Membr Biol; 2001 Sep; 183(1):15-23. PubMed ID: 11547348
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nobiletin Stimulates Chloride Secretion in Human Bronchial Epithelia via a cAMP/PKA-Dependent Pathway.
    Hao Y; Cheung CS; Yip WC; Ko WH
    Cell Physiol Biochem; 2015; 37(1):306-20. PubMed ID: 26316078
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The testis anion transporter TAT1 (SLC26A8) physically and functionally interacts with the cystic fibrosis transmembrane conductance regulator channel: a potential role during sperm capacitation.
    Rode B; Dirami T; Bakouh N; Rizk-Rabin M; Norez C; Lhuillier P; Lorès P; Jollivet M; Melin P; Zvetkova I; Bienvenu T; Becq F; Planelles G; Edelman A; Gacon G; Touré A
    Hum Mol Genet; 2012 Mar; 21(6):1287-98. PubMed ID: 22121115
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.