These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 28615736)

  • 1. An analysis of the Rayleigh-Stokes problem for a generalized second-grade fluid.
    Bazhlekova E; Jin B; Lazarov R; Zhou Z
    Numer Math (Heidelb); 2015; 131(1):1-31. PubMed ID: 28615736
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient Temporal Third/Fourth-Order Finite Element Method for a Time-Fractional Mobile/Immobile Transport Equation with Smooth and Nonsmooth Data.
    Nong L; Chen A
    Materials (Basel); 2021 Oct; 14(19):. PubMed ID: 34640188
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discrete maximal regularity of time-stepping schemes for fractional evolution equations.
    Jin B; Li B; Zhou Z
    Numer Math (Heidelb); 2018; 138(1):101-131. PubMed ID: 29375159
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiscale techniques for parabolic equations.
    Målqvist A; Persson A
    Numer Math (Heidelb); 2018; 138(1):191-217. PubMed ID: 29375160
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Runge-Kutta time semidiscretizations of semilinear PDEs with non-smooth data.
    Wulff C; Evans C
    Numer Math (Heidelb); 2016; 134(2):413-440. PubMed ID: 28615741
    [TBL] [Abstract][Full Text] [Related]  

  • 6. WEAK GALERKIN METHODS FOR SECOND ORDER ELLIPTIC INTERFACE PROBLEMS.
    Mu L; Wang J; Wei G; Ye X; Zhao S
    J Comput Phys; 2013 Oct; 250():106-125. PubMed ID: 24072935
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Error analysis for discretizations of parabolic problems using continuous finite elements in time and mixed finite elements in space.
    Bause M; Radu FA; Köcher U
    Numer Math (Heidelb); 2017; 137(4):773-818. PubMed ID: 29151621
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Error estimates of finite element methods for fractional stochastic Navier-Stokes equations.
    Li X; Yang X
    J Inequal Appl; 2018; 2018(1):284. PubMed ID: 30839715
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Discontinuous Galerkin methods for nonlinear scalar hyperbolic conservation laws: divided difference estimates and accuracy enhancement.
    Meng X; Ryan JK
    Numer Math (Heidelb); 2017; 136(1):27-73. PubMed ID: 28615748
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Posteriori Error Estimates for Fully Discrete Finite Element Method for Generalized Diffusion Equation with Delay.
    Wang W; Yi L; Xiao A
    J Sci Comput; 2020; 84(1):13. PubMed ID: 32834471
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A partially penalty immersed Crouzeix-Raviart finite element method for interface problems.
    An N; Yu X; Chen H; Huang C; Liu Z
    J Inequal Appl; 2017; 2017(1):186. PubMed ID: 28855785
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Leapfrog/finite element method for fractional diffusion equation.
    Zhao Z; Zheng Y
    ScientificWorldJournal; 2014; 2014():982413. PubMed ID: 24955431
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The meshless local Petrov-Galerkin method based on moving Kriging interpolation for solving the time fractional Navier-Stokes equations.
    Thamareerat N; Luadsong A; Aschariyaphotha N
    Springerplus; 2016; 5():417. PubMed ID: 27099822
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Optimal Error Estimate of the Fully Discrete Locally Stabilized Finite Volume Method for the Non-Stationary Navier-Stokes Problem.
    He G; Zhang Y
    Entropy (Basel); 2022 May; 24(6):. PubMed ID: 35741489
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An analysis of the TDNNS method using natural norms.
    Pechstein AS; Schöberl J
    Numer Math (Heidelb); 2018; 139(1):93-120. PubMed ID: 29674790
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cauchy problem of the generalized Zakharov type system in [Formula: see text].
    You S; Ning X
    J Inequal Appl; 2017; 2017(1):32. PubMed ID: 28216987
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new linearized Crank-Nicolson mixed element scheme for the extended Fisher-Kolmogorov equation.
    Wang J; Li H; He S; Gao W; Liu Y
    ScientificWorldJournal; 2013; 2013():756281. PubMed ID: 23864831
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Superconvergence of semidiscrete finite element methods for bilinear parabolic optimal control problems.
    Tang Y; Hua Y
    J Inequal Appl; 2017; 2017(1):62. PubMed ID: 28367051
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Divergence-Conforming Velocity and Vorticity Approximations for Incompressible Fluids Obtained with Minimal Facet Coupling.
    Gopalakrishnan J; Kogler L; Lederer PL; Schöberl J
    J Sci Comput; 2023; 95(3):91. PubMed ID: 37187467
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of coefficients of high-order schemes for Riemann-Liouville derivative.
    Wu R; Ding H; Li C
    ScientificWorldJournal; 2014; 2014():402373. PubMed ID: 24883394
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.