These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 28615743)

  • 1. Edge-based nonlinear diffusion for finite element approximations of convection-diffusion equations and its relation to algebraic flux-correction schemes.
    Barrenechea GR; Burman E; Karakatsani F
    Numer Math (Heidelb); 2017; 135(2):521-545. PubMed ID: 28615743
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Method of approximations for the convection-dominated anomalous diffusion equation in a rectangular plate using high-resolution compact discretization.
    Jha N; Verma S
    MethodsX; 2022; 9():101853. PubMed ID: 36164430
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonequilibrium scheme for computing the flux of the convection-diffusion equation in the framework of the lattice Boltzmann method.
    Chai Z; Zhao TS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):013305. PubMed ID: 25122408
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling calcium dynamics in neurons with endoplasmic reticulum: existence, uniqueness and an implicit-explicit finite element scheme.
    Guan Q; Queisser G
    Commun Nonlinear Sci Numer Simul; 2022 Jun; 109():. PubMed ID: 35340896
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Super-localized orthogonal decomposition for convection-dominated diffusion problems.
    Bonizzoni F; Freese P; Peterseim D
    BIT Numer Math; 2024; 64(3):33. PubMed ID: 39301576
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Error analysis for discretizations of parabolic problems using continuous finite elements in time and mixed finite elements in space.
    Bause M; Radu FA; Köcher U
    Numer Math (Heidelb); 2017; 137(4):773-818. PubMed ID: 29151621
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Finite-volume scheme for a degenerate cross-diffusion model motivated from ion transport.
    Cancès C; Chainais-Hillairet C; Gerstenmayer A; Jüngel A
    Numer Methods Partial Differ Equ; 2019 Mar; 35(2):545-575. PubMed ID: 30828127
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical solution of the one-dimensional fractional convection diffusion equations based on Chebyshev operational matrix.
    Xie J; Huang Q; Yang X
    Springerplus; 2016; 5(1):1149. PubMed ID: 27504247
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fourth-order multiple-relaxation-time lattice Boltzmann model and equivalent finite-difference scheme for one-dimensional convection-diffusion equations.
    Chen Y; Chai Z; Shi B
    Phys Rev E; 2023 May; 107(5-2):055305. PubMed ID: 37329033
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Positivity-Preserving Finite Volume Scheme for Nonequilibrium Radiation Diffusion Equations on Distorted Meshes.
    Yang D; Peng G; Gao Z
    Entropy (Basel); 2022 Mar; 24(3):. PubMed ID: 35327893
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Image Segmentation With Eigenfunctions of an Anisotropic Diffusion Operator.
    Wang J; Huang W
    IEEE Trans Image Process; 2016 May; 25(5):2155-67. PubMed ID: 26992021
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generalized modification in the lattice Bhatnagar-Gross-Krook model for incompressible Navier-Stokes equations and convection-diffusion equations.
    Yang X; Shi B; Chai Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):013309. PubMed ID: 25122412
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Posteriori Error Estimates for Fully Discrete Finite Element Method for Generalized Diffusion Equation with Delay.
    Wang W; Yi L; Xiao A
    J Sci Comput; 2020; 84(1):13. PubMed ID: 32834471
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Mixed Finite Element Method for Stationary Magneto-Heat Coupling System with Variable Coefficients.
    Ding Q; Long X; Mao S
    Entropy (Basel); 2022 Jun; 24(7):. PubMed ID: 35885135
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multivariable Linear Algebraic Discretization of Nonlinear Parabolic Equations for Computational Analysis.
    Zuo L; Mei F
    Comput Intell Neurosci; 2022; 2022():6323418. PubMed ID: 36211017
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multilevel Monte Carlo Methods for Stochastic Convection-Diffusion Eigenvalue Problems.
    Cui T; De Sterck H; Gilbert AD; Polishchuk S; Scheichl R
    J Sci Comput; 2024; 99(3):77. PubMed ID: 38708025
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modified Characteristic Finite Element Method with Second-Order Spatial Accuracy for Solving Convection-Dominated Problem on Surfaces.
    Wu L; Feng X; He Y
    Entropy (Basel); 2023 Dec; 25(12):. PubMed ID: 38136511
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Discrete unified gas kinetic scheme for nonlinear convection-diffusion equations.
    Shang J; Chai Z; Wang H; Shi B
    Phys Rev E; 2020 Feb; 101(2-1):023306. PubMed ID: 32168639
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A fourth-order arithmetic average compact finite-difference method for nonlinear singular elliptic PDEs on a 3D smooth quasi-variable grid network.
    Jha N; Singh B
    MethodsX; 2023 Dec; 11():102424. PubMed ID: 37846352
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D early embryogenesis image filtering by nonlinear partial differential equations.
    Krivá Z; Mikula K; Peyriéras N; Rizzi B; Sarti A; Stasová O
    Med Image Anal; 2010 Aug; 14(4):510-26. PubMed ID: 20457535
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.