These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 28615745)

  • 1. On the interconnection between the higher-order singular values of real tensors.
    Hackbusch W; Uschmajew A
    Numer Math (Heidelb); 2017; 135(3):875-894. PubMed ID: 28615745
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimal High-order Tensor SVD via Tensor-Train Orthogonal Iteration.
    Zhou Y; Zhang AR; Zheng L; Wang Y
    IEEE Trans Inf Theory; 2022 Jun; 68(6):3991-4019. PubMed ID: 36274655
    [TBL] [Abstract][Full Text] [Related]  

  • 3. OPERATOR NORM INEQUALITIES BETWEEN TENSOR UNFOLDINGS ON THE PARTITION LATTICE.
    Wang M; Duc KD; Fischer J; Song YS
    Linear Algebra Appl; 2017 May; 520():44-66. PubMed ID: 28286347
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient enhancement of low-rank tensor completion via thin QR decomposition.
    Wu Y; Jin Y
    Front Big Data; 2024; 7():1382144. PubMed ID: 39015435
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NEWTON CORRECTION METHODS FOR COMPUTING REAL EIGENPAIRS OF SYMMETRIC TENSORS.
    Jaffe A; Weiss R; Nadler B
    SIAM J Matrix Anal Appl; 2018; 39(3):1071-1094. PubMed ID: 34295018
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tensor decomposition based on the potential low-rank and
    Yang HJ; Lei YX; Wang J; Kong XZ; Liu JX; Gao YL
    J Bioinform Comput Biol; 2022 Apr; 20(2):2250002. PubMed ID: 35191362
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tensor Factorization for Low-Rank Tensor Completion.
    Zhou P; Lu C; Lin Z; Zhang C
    IEEE Trans Image Process; 2018 Mar; 27(3):1152-1163. PubMed ID: 29028199
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gram Determinants of Real Binary Tensors.
    Seigal A
    Linear Algebra Appl; 2018 May; 544():350-369. PubMed ID: 30034032
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tensor Completion Using Bilayer Multimode Low-Rank Prior and Total Variation.
    Zeng H; Huang S; Chen Y; Liu S; Luong HQ; Philips W
    IEEE Trans Neural Netw Learn Syst; 2024 Oct; 35(10):13297-13311. PubMed ID: 37195853
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Feature Extraction for Incomplete Data Via Low-Rank Tensor Decomposition With Feature Regularization.
    Shi Q; Cheung YM; Zhao Q; Lu H
    IEEE Trans Neural Netw Learn Syst; 2019 Jun; 30(6):1803-1817. PubMed ID: 30371391
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Guaranteed Functional Tensor Singular Value Decomposition.
    Han R; Shi P; Zhang AR
    J Am Stat Assoc; 2024; 119(546):995-1007. PubMed ID: 39055126
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MR-NTD: Manifold Regularization Nonnegative Tucker Decomposition for Tensor Data Dimension Reduction and Representation.
    Li X; Ng MK; Cong G; Ye Y; Wu Q
    IEEE Trans Neural Netw Learn Syst; 2017 Aug; 28(8):1787-1800. PubMed ID: 28727548
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rank-Adaptive Tensor Completion Based on Tucker Decomposition.
    Liu S; Shi X; Liao Q
    Entropy (Basel); 2023 Jan; 25(2):. PubMed ID: 36832592
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimal Sparse Singular Value Decomposition for High-Dimensional High-Order Data.
    Zhang A; Han R
    J Am Stat Assoc; 2019; 114(528):1708-1725. PubMed ID: 34290464
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vectorial Dimension Reduction for Tensors Based on Bayesian Inference.
    Ju F; Sun Y; Gao J; Hu Y; Yin B
    IEEE Trans Neural Netw Learn Syst; 2018 Oct; 29(10):4579-4592. PubMed ID: 29990067
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tensor Recovery With Weighted Tensor Average Rank.
    Zhang X; Zheng J; Zhao L; Zhou Z; Lin Z
    IEEE Trans Neural Netw Learn Syst; 2022 Jun; PP():. PubMed ID: 35731769
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kronecker-Basis-Representation Based Tensor Sparsity and Its Applications to Tensor Recovery.
    Xie Q; Zhao Q; Meng D; Xu Z
    IEEE Trans Pattern Anal Mach Intell; 2018 Aug; 40(8):1888-1902. PubMed ID: 28783623
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Sequentially Truncated Higher Order Singular Value Decomposition-Based Algorithm for Tensor Completion.
    Fang Z; Yang X; Han L; Liu X
    IEEE Trans Cybern; 2019 May; 49(5):1956-1967. PubMed ID: 29993938
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Higher order partial least squares (HOPLS): a generalized multilinear regression method.
    Zhao Q; Caiafa CF; Mandic DP; Chao ZC; Nagasaka Y; Fujii N; Zhang L; Cichocki A
    IEEE Trans Pattern Anal Mach Intell; 2013 Jul; 35(7):1660-73. PubMed ID: 23681994
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identifying Multi-Dimensional Co-Clusters in Tensors Based on Hyperplane Detection in Singular Vector Spaces.
    Zhao H; Wang DD; Chen L; Liu X; Yan H
    PLoS One; 2016; 11(9):e0162293. PubMed ID: 27598575
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.