These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Design, synthesis, molecular modelling, and biological evaluation of novel substituted pyrimidine derivatives as potential anticancer agents for hepatocellular carcinoma. Ahmed NM; Youns M; Soltan MK; Said AM J Enzyme Inhib Med Chem; 2019 Dec; 34(1):1110-1120. PubMed ID: 31117890 [TBL] [Abstract][Full Text] [Related]
7. Design, synthesis, anti-tumor activity, and molecular modeling of quinazoline and pyrido[2,3-d]pyrimidine derivatives targeting epidermal growth factor receptor. Hou J; Wan S; Wang G; Zhang T; Li Z; Tian Y; Yu Y; Wu X; Zhang J Eur J Med Chem; 2016 Aug; 118():276-89. PubMed ID: 27132165 [TBL] [Abstract][Full Text] [Related]
8. Identification of new 5-(2,6-dichlorophenyl)-3-oxo-2,3-dihydro-5H-thiazolo[3,2-a]pyrimidine-7-carboxylic acids as p38α MAPK inhibitors: Design, synthesis, antitumor evaluation, molecular docking and in silico studies. El-Wakil MH; El-Dershaby HA; Ghazallah RA; El-Yazbi AF; Abd El-Razik HA; Soliman FSG Bioorg Chem; 2024 Apr; 145():107226. PubMed ID: 38377818 [TBL] [Abstract][Full Text] [Related]
9. Design, synthesis and biological evaluation of novel hybrids targeting mTOR and HDACs for potential treatment of hepatocellular carcinoma. Zhai S; Zhang H; Chen R; Wu J; Ai D; Tao S; Cai Y; Zhang JQ; Wang L Eur J Med Chem; 2021 Dec; 225():113824. PubMed ID: 34509167 [TBL] [Abstract][Full Text] [Related]
10. Indoline ureas as potential anti-hepatocellular carcinoma agents targeting VEGFR-2: Synthesis, in vitro biological evaluation and molecular docking. Eldehna WM; Fares M; Ibrahim HS; Aly MH; Zada S; Ali MM; Abou-Seri SM; Abdel-Aziz HA; Abou El Ella DA Eur J Med Chem; 2015 Jul; 100():89-97. PubMed ID: 26071861 [TBL] [Abstract][Full Text] [Related]
11. Molecular Dynamics and Biological Evaluation of 2-chloro-7-cyclopentyl- 7H-pyrrolo[2,3-d]pyrimidine Derivatives Against Breast Cancer. Singaram K; Marimuthu D; Baskaran S; Chinaga SK; Shanmugarajan D; Vadivel T Comb Chem High Throughput Screen; 2017; 20(8):703-712. PubMed ID: 28738766 [TBL] [Abstract][Full Text] [Related]
12. Design, synthesis, biological evaluation, and modeling studies of novel conformationally-restricted analogues of sorafenib as selective kinase-inhibitory antiproliferative agents against hepatocellular carcinoma cells. Sbenati RM; Zaraei SO; El-Gamal MI; Anbar HS; Tarazi H; Zoghbor MM; Mohamood NA; Khakpour MM; Zaher DM; Omar HA; Alach NN; Shehata MK; El-Gamal R Eur J Med Chem; 2021 Jan; 210():113081. PubMed ID: 33310290 [TBL] [Abstract][Full Text] [Related]
13. Synthesis and structure-activity relationship study of 2-(substituted benzylidene)-7-(4-fluorophenyl)-5-(furan-2-yl)-2H-thiazolo[3,2-a]pyrimidin-3(7H)-one derivatives as anticancer agents. Selvam TP; Karthick V; Kumar PV; Ali MA Drug Discov Ther; 2012 Aug; 6(4):198-204. PubMed ID: 23006990 [TBL] [Abstract][Full Text] [Related]
14. Synthesis, characterization, and anthelmintic activity of novel 6,7,8,9-tetrahydro-5H-5-phenyl-2-benzylidine-3-substituted hydrazino thiazolo (2,3-b) quinazoline derivatives and analogues. Selvam TP; Kumar PV Drug Discov Ther; 2010 Dec; 4(6):392-8. PubMed ID: 22491303 [TBL] [Abstract][Full Text] [Related]
15. Design and synthesis of pyrazolo[3,4-d]pyrimidines: Nitric oxide releasing compounds targeting hepatocellular carcinoma. Elshaier YAMM; Shaaban MA; Abd El Hamid MK; Abdelrahman MH; Abou-Salim MA; Elgazwi SM; Halaweish F Bioorg Med Chem; 2017 Jun; 25(12):2956-2970. PubMed ID: 28487127 [TBL] [Abstract][Full Text] [Related]
16. Synthesis of novel benzo[4,5]thiazolo[1,2-a]pyrimidine-3-carboxylate derivatives and biological evaluation as potential anticancer agents. Nagarapu L; Vanaparthi S; Bantu R; Ganesh Kumar C Eur J Med Chem; 2013 Nov; 69():817-22. PubMed ID: 24113366 [TBL] [Abstract][Full Text] [Related]
17. Antiproliferative, apoptotic and anti-inflammatory potential of 5H-benzo[h]thiazolo[2,3-b]quinazoline analogues: Novel series of anticancer compounds. Sonkar AB; Verma A; Yadav S; Singh J; Kumar R; Keshari AK; Kumar A; Kumar D; Shrivastava NK; Rani S; Rastogi S; Alamoudi MK; Nazam Ansari M; Saeedan AS; Kaithwas G; Saha S Int Immunopharmacol; 2024 Aug; 137():112496. PubMed ID: 38901240 [TBL] [Abstract][Full Text] [Related]
18. Design and synthesis of novel quinazoline nitrogen mustard derivatives as potential therapeutic agents for cancer. Li S; Wang X; He Y; Zhao M; Chen Y; Xu J; Feng M; Chang J; Ning H; Qi C Eur J Med Chem; 2013 Sep; 67():293-301. PubMed ID: 23871909 [TBL] [Abstract][Full Text] [Related]
19. Quinazoline derivatives as cathepsins B, H and L inhibitors and cell proliferating agents. Raghav N; Jangra S; Kumar A; Bhattacharyya S Int J Biol Macromol; 2017 Jan; 94(Pt A):719-727. PubMed ID: 27780761 [TBL] [Abstract][Full Text] [Related]
20. [1,2,4]Triazolo[4,3-c]quinazoline and bis([1,2,4]triazolo)[4,3-a:4',3'-c]quinazoline derived DNA intercalators: Design, synthesis, in silico ADMET profile, molecular docking and anti-proliferative evaluation studies. El-Adl K; Ibrahim MK; Alesawy MSI; Eissa IH Bioorg Med Chem; 2021 Jan; 30():115958. PubMed ID: 33360576 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]